
Zero Grads: Supplemental Materials
MICHAEL FISCHER, University College London, United Kingdom
TOBIAS RITSCHEL, University College London, United Kingdom

ACM Reference Format:
Michael Fischer and Tobias Ritschel. 2024. Zero Grads: Supplemental Ma-
terials. ACM Trans. Graph. 43, 4, Article 49 (July 2024), 3 pages. https:
//doi.org/10.1145/3658173

This supplementary contains additional information on our surro-
gate implementation and hyperparameters (Sec. 1), rendering setups
(Sec. 2.1), and detailed descriptions of the tasks we solve (Sec. 2.2).

1 IMPLEMENTATION DETAILS
We implement all our experiments in PyTorch [Paszke et al. 2017].
The proxy powering our surrogate is implemented as amulti-layered
perceptron (MLP) and activated by a leaky ReLU. We randomly ini-
tialize our Neural Proxy for each optimization run (via the standard
PyTorch initialization, for the quadratic proxy, we choose the iden-
tity matrix) and optimize its weights alongside the parameter with a
separate Adam optimizer. We perform three update steps on the sur-
rogate parameters 𝜙 per optimization iteration in order to improve
the surrogate’s fit to the sampled data. This is simple autodiff-driven
gradient descent (GD) and hence very fast. Note that no new data is
sampled between these update steps, they merely serve to improve
the surrogate fit and do not increase the required computational
budget. For all gradient updates, we use the Adam optimizer with
standard parameters and learning rates as specified in Tab. 1. We
additionally experimented with different sampling patterns and
found both both low-discrepancy (Sobol) and antithetic samples
and found both to improve performance, and adapt antithetic sam-
ples for simplicity. We normalize the network’s inputs to [0,1]. For
the lower-dimensional tasks (𝑛dim < 50), it suffices to use 3 hidden
layers with 64 neurons each, whereas for the higher-dimensional
tasks (below the horizontal line in Tab. 1), we found that we needed
to increase the surrogate’s capacity to 8 layers à 128 neurons and
additionally use positional encoding to increase the frequencies that
the network can encode.

1.1 Hyperparameters
Our method comes with two hyperparameters: the number of sam-
ples 𝑁 we use to estimate our surrogate’s gradient with (cf. Alg.2 in
the main text), and the spread of the locality kernel 𝜆, which will
influence how far these samples are spaced out around the current
parameter 𝜃 .

Authors’ addresses: Michael Fischer, University College London, United Kingdom,
m.fischer@cs.ucl.ac.uk; Tobias Ritschel, University College London, United Kingdom,
t.ritschel@ucl.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
0730-0301/2024/7-ART49
https://doi.org/10.1145/3658173

Table 1. Our hyperparameters 𝜎𝑜 and 𝑁 , as well as the experiment settings
for the different tasks, sorted by dimensionality in ascending order. MPL is
short for matplotlib.

𝜎𝑜 𝑁 𝑛dim LR 𝜃 LR 𝜙 Renderer
Wicker 0.33 2 3 1×10−3 1×10−3 Blender
BRDF 0.33 2 4 1×10−3 1×10−3 Mitsuba
CBox 0.10 2 4 5×10−4 1×10−3 Mitsuba
Gravity 0.20 2 5 1×10−3 1×10−3 Blender
Rocket 0.33 2 10 1×10−3 5×10−4 MPL
NodeGr. 0.20 2 24 1×10−3 1×10−3 Blender
LED 0.33 2 336 1×10−3 1×10−3 Blender

Mosaic 0.025 16 320 5×10−4 1×10−3 Blender
Caustic 0.013 20 1,024 2×10−4 1×10−4 PyTorch
Mesh 0.025 20 7,686 2×10−3 1×10−4 NVDiff.
Spline Gen. 0.025 20 8,764 1×10−5 1×10−4 MPL
MLP 0.025 20 35,152 1×10−4 1×10−4 MPL
Texture 0.025 20 196,608 1×10−5 1×10−4 MPL

We specify the number of samples 𝑁 we use for estimating the
surrogate’s gradients in Tab. 1. For the lower-dimensional tasks, it
suffices to use 𝑁 = 2, whereas for the higher-dimensional tasks,
the noise and higher variance from this rough gradient estimate
impede convergence and thus require higher sample counts. We
would like to emphasize that those are still far lower than what
competing methods use, e.g., 2𝑛dim for finite differences (FD) or
𝑚 × 𝑛dim,𝑚 ≫ 2, for directional Gaussian smoothing (DGS) [Zhang
et al. 2020]. Our method also benefits from more samples in the
lower-dimensional regime, but these come at the cost of increased
compute, which is why we tried to achieve a minimal number to
keep the overhead low.
We show a comparison of different sample counts on theMesh

and MLP tasks in Fig. 3 and detail the remaining hyperparameters
and experiment settings in Tab. 1, where 𝜎𝑜 denotes the spread
of the locality kernel 𝜆. As a general rule of thumb, we recom-
mend setting the initial 𝜎𝑜 to 0.33 on normalized domains and

N
or

m
. M

SE

Samples (log2)
0

1 

8 64

MLP
Mesh

Fig. 3. Final error vs. samplecount 𝑁 .

finetune from there, if nec-
essary. For higher-dimen-
sional, interlinked prob-
lems, we have found amore
fine-granular sampling to
be necessary and use 𝜎𝑜 =

0.025. We use 15% of the lo-
cality spread as the spread
of the smoothing kernel 𝜅.

2 TASKS
This section provides information on the task setup, problems, goals
and rendering architectures used.

ACM Trans. Graph., Vol. 43, No. 4, Article 49. Publication date: July 2024.

https://doi.org/10.1145/3658173
https://doi.org/10.1145/3658173
https://doi.org/10.1145/3658173


49:2 • Michael Fischer and Tobias Ritschel

Iterations0 10k

Lo
g-

M
SE

10-1

105

Adam 1e-3

Ours 1e-3

Adam 1e-1

Trajectories for di�. seedsRosenbrock Function w/ a, b = (1, 100)

Fig. 1. We evaluate our method on the Rosenbrock function against gradient descent with analytical gradients and Adam with equal learning rate, sample
count and iterations. Similar to Adam, our method struggles to make progress in the valleys of low slope, a common limitation of gradient-based techniques.
Adam, with a higher learning rate, converges faster than our method. The convergence plots in the right subfigure are median values over an ensemble of 10
independent runs and seeds.

ReferenceOursnoSmoothnoNNnoLocal

n.a.

Te
xt

ur
e

M
LP

M
es

h
C

au
st

ic

Fig. 2. We show the results of our ablated methods from the main man-
uscript (Sec. 4.1) on the higher-dimensional tasks. Similar to CMA, the
result for the quadratic proxy (noNN) could not be run due to the quadratic
memory complexity.

2.1 Rendering
To render the images for the tasks Mosaic, Wicker, LED, NodeGraph
and Gravity, we interface our method with Blender via an efficient
socket-based local TCP network, which enables us to make use of
Blender’s rendering engines and the embedded physics solver. All
images were set to render noise-free under either Eevee or Cycles,
with 16 to 128 samples and denoising activated. For the tasks BRDF
and Cornell-Box, and the comparisons with Mitsuba, we use Mit-
suba 3 [Jakob et al. 2022] with the path-replay backpropagation
integrator at 16spp. For the Mesh task, we use NVDiffRast [Laine

et al. 2020] with standard hyperparameters. For the remaining tasks
Rocket, Spline Generation and Texture, we use a custom matplotlib-
based renderer [Hunter 2007]. Note that none of this interfacing is
necessary for our method to work, but pure convenience for rapid
prototyping and reducing I/O times from and to disk. Most impor-
tantly, we do not propagate any gradient information through the
rendering process, even if this were possible, e.g., when using a dif-
ferentiable renderer. One could alternatively render an image, save
it to disk and manually load it and perform a gradient update step,
which would yield the same results, but be arguably less convenient.

2.2 Task Descriptions
2.2.1 Higher Dimensions. While some of our higher-dimensional
example tasks could in theory also be solved via established, spe-
cialized methods (e.g., [Holl et al. 2020; Jakob et al. 2022; Nicolet
et al. 2021]), they show that our method scales well to higher dimen-
sional problems and reinforce our argument of general applicability.
All comparisons to the following optimization algorithms are

performed under the same budget of function evaluations. For the
comparisons with genetic algorithms (GAs), we use the publicly
available Python package pygad [Gad 2021]. For simulated anneal-
ing (SA) [Xiang et al. 2013], we use the scipy library [Virtanen
et al. 2020]. For simultaneous perturbation stochastic approxima-
tion (SPSA) [Spall 1992], we use the publicly available spsa package
[Nguyen 2022]. Note that, while we use standard hyperparameters
for the other packages, we here adapted the SPSA perturbation ra-
dius to the sampling radius used by our method in order to enable
a fair comparison (the default value of 2.0 is too large for many of
our problems, e.g., for the delicate task of network training).

Texture For the Texture task, we use our method to optimize
the 256 pixels of an image texture, leading to a 256× 256× 3 =

196,608 optimization problem. We randomly initialize the texels
from N(0.5, 0.05), i.e., they are drawn from a Normal distribution
with mean 0.5, corresponding to a grey value. As is common, we

ACM Trans. Graph., Vol. 43, No. 4, Article 49. Publication date: July 2024.



Zero Grads: Supplemental Materials • 49:3

additionally employ a whitening transform during optimization
[Nimier-David et al. 2019].

MLP This task is an extension of the texture task to address the
concern that optimization variables are not sufficiently interlinked
with each other. To this end, we train a MLP to replicate randomly
sampled digits from the MNIST [LeCun 1998] dataset. The MLP
has two ReLU-activated hidden layers of 32 neurons and a final
layer with 784 neurons that is activated by a Sigmoid, leading to a
total of 35,152 network weights and hence to a 35,152-dimensional
optimization problem. The weights are initialized via the standard
formula U(−𝑘, 𝑘), where 𝑘 is the reciprocal of the layer’s input
features [Paszke et al. 2017].
Caustic For this task, we take inspiration from Wyman and

Davis [2006] and write a fast, rasterization-based caustic renderer.

Fig. 4. An illustration why dif-
ferentiating an ODE solver R(𝜃 )
w.r.t. time is not trivially differen-
tiable: moving the event-time 𝜃
of the blue signal within the yel-
low interval will not affect the ob-
served outcome, as the solver op-
erates on the discretized version
R̂ only and will continue to ob-
serve “on” and “off” at timesteps
𝑖 and 𝑖 + 1, respectively.

The idea is that a paral-
lel bundle of rays from a far-
away directional light source
hits a parameterized refractive
surface (our heightfield, usu-
ally modeled as a glass slab
[Nimier-David et al. 2019; Pa-
pas et al. 2011; Schwartzburg
et al. 2014]), and gets refracted
according to Snell’s law (we
use an index of refraction of
1.33). The refracted rays then
hit a receiver plane, where we
record, for each pixel, the num-
ber of received rays, resulting
in an approximate caustic. We
use an equal ray- and receiver
resolution of 512p. The relation
between the optimization vari-
ables (the heightfield, in our
case parameterized as a cubic B-Spline of resolution 322, randomly
initialized) and the final output in this task is highly non-linear, as
a change in the heightfield has the potential to affect various pixels
across the entire receiver plane. Moreover, the task is not trivially
differentiable, as the conversion of the (continuous) hitpoint on the
receiver plane to discrete pixel coordinates in the image grid is a
discontinuous operation.
Mesh For theMesh task, we optimize the vertices of a triangle

mesh such that the renderings of the mesh match those of a refer-
ence shape. Our source mesh has 2,562 vertices whose 3D positions
we optimize, leading to a highly interlinked 7,686-dimensional prob-
lem. We follow the approach in [Nicolet et al. 2021] and use their
smooth formulation, the AdamUniform optimizer and the Laplacian
regularization, thereby nicely showing that our surrogate success-
fully learns to replicate the regularized loss landscape. For fairness,
all competitors operate in this parametrization. Following [Nicolet
et al. 2021], the source shape is initialized as a tessellated sphere
and rendered from 13 different viewpoints under environment illu-
mination using NVDiffRast [Laine et al. 2020] – however, without
backpropagating their gradient information; all gradients employed
in the optimization are produced by our surrogate.

Spline Generation For the Spline Generation task, we train
a generative model, a variational autoencoder (VAE)[Kingma and
Welling 2013], to replicate digits from the MNIST dataset in a spline
representation. Our VAE consists of an encoder-MLP with roughly
40k neurons, and a decoder-MLP with 8,764 neurons. To stabilize
training, we use a pre-trained encoder that serves as feature ex-
tractor and projects the MNIST images into the latent space, from
where we learn a generative decoder that predicts the horizon-
tal and vertical translation of 10 spline support points (initialized
diagonally across the image plane). Subsequently, we fit a spline
through these predicted support points with a (matplotlib-based)
non-differentiable renderer and learn our surrogate on the recon-
structed splines’ image-space mean-squared error (MSE), regular-
ized by the VAE’s Kullback-Leibler divergence (KLD) (weighting
factor 0.1). Descending along the surrogate gradients then produces
the weights for a generative decoder that can be sampled to generate
new MNIST digits. Again, we initialize all stateful components with
the standard formulaU(−𝑘, 𝑘), where 𝑘 is the reciprocal of a layer’s
input features [Paszke et al. 2017].

REFERENCES
Ahmed Fawzy Gad. 2021. PyGAD: An Intuitive Genetic Algorithm Python Library.

arXiv:cs.NE/2106.06158
Philipp Holl, Vladlen Koltun, and Nils Thuerey. 2020. Learning to control pdes with

differentiable physics. arXiv preprint arXiv:2001.07457 (2020).
J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science &

Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55
Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,

Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. 2022.
Mitsuba 3 Renderer, 2022.

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM
Transactions on Graphics (TOG) 39, 6 (2020), 1–14.

Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998).

Jack Nguyen. 2022. spsa. https://github.com/SimpleArt/spsa.
Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in Inverse Ren-

dering of Geometry. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia)
40, 6 (Dec. 2021). https://doi.org/10.1145/3478513.3480501

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:
A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings
of SIGGRAPH Asia) 38, 6 (Dec. 2019). https://doi.org/10.1145/3355089.3356498

Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon Rusinkiewicz, Wojciech Matusik,
and Tim Weyrich. 2011. Goal-based caustics. In Computer Graphics Forum, Vol. 30.
Wiley Online Library, 503–511.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in pytorch. (2017).

Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly. 2014. High-
contrast computational caustic design. ACM Transactions on Graphics (TOG) 33, 4
(2014), 1–11.

James C Spall. 1992. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Trans Automatic Control 37, 3 (1992),
332–41.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature methods 17, 3 (2020), 261–272.

Chris Wyman and Scott Davis. 2006. Interactive image-space techniques for approxi-
mating caustics. In Proceedings of the 2006 symposium on Interactive 3D graphics and
games. 153–160.

Yang Xiang, Sylvain Gubian, Brian Suomela, and Julia Hoeng. 2013. Generalized
simulated annealing for global optimization: the GenSA package. R J. 5, 1 (2013),
13.

Jiaxin Zhang, Hoang Tran, Dan Lu, and Guannan Zhang. 2020. A scalable evolution
strategy with directional Gaussian smoothing for blackbox optimization. arXiv
preprint (2020).

ACM Trans. Graph., Vol. 43, No. 4, Article 49. Publication date: July 2024.

https://arxiv.org/abs/cs.NE/2106.06158
https://doi.org/10.1109/MCSE.2007.55
https://github.com/SimpleArt/spsa
https://doi.org/10.1145/3478513.3480501
https://doi.org/10.1145/3355089.3356498

	1 Implementation Details
	1.1 Hyperparameters

	2 Tasks
	2.1 Rendering
	2.2 Task Descriptions

	References

