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▪ We cannot compute the loss, but we can sample it! 

▪ Fit a function to the samples: surrogate loss 

▪ Surrogate loss: analytical gradients

The original loss might be... 
▪ ... discontinuous: smoothing
▪ ... in large parts irrelevant: locality
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The Problem Results - ZeroGrads can ...

Caveats & Limitations

▪ Many programs are not differentiable

▪ Specific solutions: don’t scale across apps
e.g., what if we want to differentiate through Blender? 

▪ DFO algorithms: don’t scale w.r.t. dimensionality
e.g., what if we want to optimize a triangle mesh?
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▪ Surrogate learning: self-supervised, on-the-fly
▪ Surrogate function: neural network
▪ Network hysteresis: smooth gradients over time
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... train a generative model on a non-differentiable task:

... scale to higher-dimensional problems:

... optimize arbitrary forward models:

Init Ours Reference Init Ours Reference Init Ours Reference

BRDFs Positional Derivatives Node Graph Connections

Physics SimulationDiscrete or Binary ProblemsMaterial Graphs

Our Solution: ZeroGrads

... sometimes even outperform Adam:

Iterations0 10k

Lo
g-

M
SE

10-1

105

Trajectories for di�erent seeds

Rosenbrock Function
Adam 1e-3

Ours 1e-3

Adam 1e-1

▪ Higher-dimensional problems: 
require more samples, longer runtime

▪ No convergence guarantees: 
loss landscape might be too complex

▪ “No free lunch”: 
if GD cannot work, ZeroGrads will not work either
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