
SAMa: Material-aware 3D selection and segmentation

Supplementary Material

In this supplemental document we provide additional de-

tails on training and implementation, as well as results that

could not be included in the main text due to space restric-

tions. We strongly encourage the reader to view the videos

in our supplemental HTML material for 3D selection visu-

alizations, examples of our fine-tuning material dataset, and

a video of our application GUI.

A. Implementation details

A.1. Finetuning

As mentioned in paper Sec. 3, we fine-tune parts of the

SAM2 [7] model on material-specific video data. For all

our experiments, we use the model in its “large” configura-

tion, employing the Hiera [8] image encoder with ca. 212M

params, which yielded the best results in our experiments.

As the original SA-V [7] dataset, we encode our video

dataset as MP4 videos with 1024×1024 resolution and the

annotations in CoCoRLE encoding for efficient storage.

Our video dataset sub-samples the video by skipping ev-

ery other video frame to increase the intra-frame distance,

and then randomly chooses sequences of six consecutive

sub-sampled frames. For each material and each frame, we

sample a click. We do not select a material if it is barely vis-

ible in the frames, i.e., if it occupies less than 0.02% of the

frame (150 pixels). We erode the material’s ground-truth

mask before using it as a sampling mask, ensuring that the

sampled click is at least four pixels away from the material’s

border. We sample a positive click with 80% probability,

and a negative click on a random other material with 20%

and reverse the temporal order of the frame sequence with

a chance of 50%. During the forward pass of the model,

we use every other frame as a clicked frame and thus force

the model to use its memory attention module to infer the

selection for the intermediate, unclicked frames. Addition-

ally, we make a random 50% choice between sampling the

most salient material in the frame (with the highest number

of annotated pixels) and any other material.

During training, we compute the per-frame loss on the

model prediction and ground-truth annotation via the sum

of two losses, a binary cross-entropy followed by a sigmoid

(using the log-sum-exp [2] trick for numerical stability) and

a sigmoid-normalized Dice loss [6] to account for the im-

balance between (large) background and (smaller) material

masks. We use the AdamW optimizer with weight decay

0.01 and learning rate 1× 10−5.

We additionally experiment with mixed video- and

image-finetuning and find that the results perform roughly

on-par with our video model when training on our video-

dataset and 20% of the Materialistic [9] data set mixed in.

For simplicity, all results in the main text therefore use

solely our video-finetuned model.

A.2. kNN lookup

As explained in the main text, we perform k-nearest neigh-

bour (kNN) lookup into our similarity point cloud to infer

the material selection for new, unseen views. Here, we take

advantage of modern, GPU-accelerated large-scale queries

via the FAISS library [3, 4].

Specifically, we use the INDEXFLATL2 index for exact

search w.r.t. the points’ L2 distance, encoded as an INDEX-

IVFFLAT for compactness, with 100 clusters, and push it to

the GPU (a cluster is a representative subset of the data that

can be traversed efficiently and narrows down the search

region during later query operations). This index, as men-

tioned in the main text, must be re-constructed after each

new click, since the initial camera from which the click was

performed will add to, and therefore change, the similarity

point cloud. This re-construction takes around 0.5 seconds

(all timings, including those in the main text, are reported

on a single NVIDIA 40GB A100).

Once the index is built, we visit five clusters during the

search for the top-k nearest neighbors. We found this num-

ber of visited clusters to be a hyperparameter which, even

with the lowest setting of a single cluster, does not signifi-

cantly deteriorate performance since the point cloud is rela-

tively dense.

A.3. Camera subsampling

To infer the 2D similarities which will later be projected to

3D, we need to sub-sample a set of cameras that cover the

object well. For NeRFs and 3D Gaussians, we sub-sample

20% of the training views, for meshes we use spherical Fi-

bonacci sampling with 30 sampled cameras. Once we have

sub-sampled the cameras, we need to sort them into a co-

herent, smooth trajectory to enable our video model to keep

temporal consistency between the frames. We use a greedy

iterative search to achieve a smooth trajectory from the ini-

tial camera, as detailed in Algorithm 1.

B. Additional quantitative results

We here report a more detailed, per-scene evaluation of

the metrics reported in the main text. The per-scene mea-

surements for robustness and multiview-consistency are in

Tab. 2 and Tab. 3, respectively.

Additionally, we report the per-scene selection accuracy

as mean intersection over union (mIoU) and F1 scores. F1



Figure 1. Selection results on real-world scenes from the MIPNeRF360 dataset [1].

Figure 2. Exemplary visualizations of our annotated test frames from the MIPNeRF360 dataset [1].

is more robust than precision or recall alone, since either

individual metric can easily be gamed by failure cases. Pre-

cision quantifies the relevance of the selected data (when

the model says material A, is it really material A?), and

can therefore easily be cheated by simply selecting a small

amount of high-confidence elements (e.g., in our case, just

the clicked pixel). Recall quantifies the amount of returned

relevant data (when there is material A, how much of it does

the model find?), and can easily be deceived by always se-

lecting all the elements (e.g., in our case, a mask full of

1’s). We show both mIoU and F1, computed on the NeRF-,

MIPNeRF360- and our dataset, in Tab. 4, Tab. 5 and Tab. 1,

respectively. We perform the evaluation on 3D Gaussians

for rendering speed. For the real-world scenes from the

Algorithm 1 Camera trajectory sorting, starting from an

initial camera. CALCNORMS calculates the spatio-angular

distances between a given camera and all other cameras.

Input: initial camera i, other cameras o

Output: sorted cameras

1: procedure SAMPLECAMERATRAJECTORY

2: curr← i ▷ set current camera

3: sorted← [ curr ] ▷ initialize sorted cameras list

4: while len(o) > 0 do

5: norms← CALCNORMS(curr, o)
6: cidx← argmin (norms) ▷ closest to current

7: sorted.append(o [cidx])
8: curr← o [cidx]
9: o [cidx].pop()

10: end while

11: return sorted

12: end procedure

MIPNeRF dataset, we found the Gaussian’s depth to not

be sufficiently accurate and therefore use NeRFacto [10].

The quantitative evaluation confirms our qualitative find-

ings: our method consistently performs well for the task of

material selection, beating the other baselines in the major-

ity of cases. In select cases, for instance the MIC scene

from the NeRF dataset (see Tab. 4), SAM2 wins in terms of

selection accuracy, since the materials of the object are vi-

sually indistinguishable from one another and applied to the

object’s subparts, which have a tendency to be selected by

SAM2. Both Materialistic-based baselines under-perform

in all experiments. This can be attributed in part to the fact

that they are not multiview consistent, but, equally impor-

tant, to the fact that the underlying model generally attends

to coarser structures (due to the different ViT patchsizes, see

Fig. 3) and is not sufficiently sensitive to object (sub-)parts.

C. Additional qualitative results

We show additional examples of recoloring NeRFs based

on our material-selection in Fig. 6.

We show examples of our hand-annotated frames from

the MIPNeRF dataset which we used for evaluation in

Fig. 2. Additionally, we show examples of material selec-

tion on real-world scenes from these MIPNeRF360 scenes

[1] in Fig. 1.

As claimed in the main text, our frame duplication strat-

egy not only improves SAMa’s predictions, but also helps

to improve prediction confidence on the original SAM2 ar-

chitecture, which we visualize in Fig. 5.

To add to our robustness evaluation, we show a quali-

tative example of how robust the methods are to different

clicks on the same material in Fig. 4.

Finally, in Fig. 7, we show a comparison against Garfield



Ours SAM2 Materialistic Mat. MVClicked

Figure 3. 2D selection results of the different methods for various

models. We do not perform any point cloud lookup or novel view

inference, the shown heatmap is obtained by directly feeding the

clicked frame to the model.
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Figure 4. Robustness of the different approaches (rows) for clicks

on different locations of the same material (columns).

Click No duplication Duplication No duplication Duplication

SAM2 SAMa

Figure 5. The effects of our frame duplication strategy translate

from our SAMa model to the original SAM2 model.

[5], which requires asset-specific pre-training and does not

target materials. In contrast, our approach works with arbi-

trary assets without asset-specific pre-training, as it merely

needs to render the existing 3D asset to images and back-

Clicked Edited Edited

Figure 6. Additional examples of editing the NeRF’s color based

on the user’s selected material.

Garfield, ca. 35min Ours, ca. 2s Ours, ca. 2s

Figure 7. Comparison to Garfield [5], which cannot be run without

asset-specific pre-training and does not target material selection.

project the obtained similarity values. Our times from click-

to-selection are therefore around three orders of magnitude

faster.

We also show the 2D material selection accuracy for

all models in Fig. 3. From this figure, it becomes evi-

dent that the SAM-based methods benefit significantly from

the smaller patchsize of the image encoder: Hiera, the en-

coder used by the SAM2 architecture (Ours, SAM2) uses a

four-times smaller patchsize of 4×4, whereas Materialistic-

based methods employ DINO features, which use a patch-

size of 8 × 8, resulting in blurrier edges. We would like

to emphasize that the input resolution is the same for all

models, 512p. Moreover, we observe that our model deals

well with perspective distortion (middle row in Fig. 3) and

low-contrast input (bottom row in Fig. 3).

Finally, we show thumbnail renderings of our synthetic

dataset in Fig. 8.
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WCHAIR COFFEE PERFUME CHEST COUCH BIKE HUT BURGER PLANT POSTBOX CAR POOLTABLE

mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1

Ours 0.73 0.84 0.91 0.95 0.92 0.96 0.82 0.90 0.41 0.56 0.71 0.83 0.79 0.88 0.89 0.94 0.79 0.88 0.94 0.97 0.34 0.51 0.57 0.73

SAM2 0.44 0.60 0.47 0.64 0.91 0.96 0.41 0.56 0.09 0.16 0.22 0.36 0.17 0.25 0.57 0.72 0.26 0.41 0.69 0.81 0.06 0.11 0.12 0.21

Materialistic 0.51 0.67 0.51 0.68 0.81 0.89 0.46 0.61 0.18 0.30 0.63 0.77 0.44 0.61 0.25 0.40 0.74 0.85 0.91 0.95 0.11 0.19 0.15 0.26

Materialistic MV 0.61 0.75 0.48 0.64 0.89 0.94 0.51 0.65 0.17 0.29 0.57 0.73 0.52 0.69 0.53 0.67 0.75 0.86 0.94 0.97 0.10 0.18 0.25 0.40

Table 1. Per-scene metrics on our synthetic dataset for the different scenes (columns) and methods (rows). Higher is better.

LEGO HOTDOG SHIP FICUS MIC DRUMS MATERIALS CHAIR GARDEN KITCHEN COUNTER TREEHILL BICYCLE

Ours 0.21 1.01 1.68 0.45 2.89 0.85 1.47 0.25 0.38 0.19 1.25 2.79 1.22

SAM2 0.43 1.04 2.55 0.46 1.75 0.43 0.33 3.03 0.76 4.41 0.22 1.51 7.68

Materialistic 4.33 2.69 2.62 2.40 3.10 2.48 3.69 3.88 10.24 6.16 13.51 4.83 5.90

Materialistic MV 7.37 3.17 2.33 2.99 4.38 2.51 3.67 4.82 3.27 2.35 5.04 4.47 2.52

WCHAIR COFFEE PERFUME CHEST COUCH BIKE HUT BURGER PLANT POSTBOX CAR POOLTABLE

Ours 0.06 0.09 0.01 0.12 0.60 0.95 0.87 0.04 0.61 0.15 0.43 0.15

SAM2 0.10 0.01 0.51 0.02 0.34 0.45 2.25 0.60 0.02 3.31 1.17 0.05

Materialistic 0.42 0.73 0.50 1.28 4.80 2.53 2.63 1.16 0.60 0.71 1.86 4.88

Materialistic MV 0.19 0.85 0.61 2.30 4.83 2.34 5.46 2.97 2.35 0.68 1.25 1.95

Table 2. Per-scene (columns) breakdown of our robustness evaluation metric for all methods (rows) from the main text. Lower is better.

The NeRF- and MIPNeRF360-scenes are in the top sub-table, our custom scenes in the bottom sub-table. This only evaluates the robustness

and not whether the selection is correct.

LEGO HOTDOG SHIP FICUS MIC DRUMS MATERIALS CHAIR GARDEN KITCHEN COUNTER TREEHILL BICYCLE

Ours 0.91 1.20 2.20 0.30 5.64 0.62 5.77 0.85 0.18 0.72 0.87 1.32 3.71

SAM2 2.99 1.44 3.03 0.37 1.46 0.94 1.54 6.13 0.28 1.04 0.40 1.43 2.77

Materialistic 5.18 4.57 7.98 0.62 4.59 1.77 12.59 6.56 2.59 4.40 2.29 9.06 5.92

Materialistic MV 2.79 4.87 2.97 0.45 4.26 1.00 8.58 6.32 2.15 2.11 0.89 9.00 6.36

WCHAIR COFFEE PERFUME CHEST COUCH BIKE HUT BURGER PLANT POSTBOX CAR POOLTABLE

Ours 0.89 0.31 0.26 1.16 1.05 1.17 3.46 0.32 0.61 0.69 1.61 9.03

SAM2 1.60 1.61 0.47 4.03 1.98 5.58 16.63 1.54 0.68 2.69 2.88 20.95

Materialistic 3.12 2.72 0.73 8.12 3.61 2.92 13.27 7.32 2.33 0.93 13.79 10.66

Materialistic MV 1.78 3.11 0.30 6.79 2.08 2.32 11.04 4.07 1.90 0.61 16.89 5.40

Table 3. Per-scene (columns) breakdown of our multiview-consistency evaluation metric for all methods (rows) from the main text. Lower

is better. The NeRF- and MIPNeRF360-scenes are in the top sub-table, our custom scenes in the bottom sub-table. This only evaluates the

multiview-consistency and not whether the selection is correct.

LEGO HOTDOG SHIP FICUS MIC DRUMS MATERIALS CHAIR

mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1

Ours 0.78 0.87 0.87 0.93 0.06 0.12 0.68 0.81 0.24 0.39 0.25 0.39 0.16 0.27 0.76 0.87

SAM2 0.05 0.09 0.77 0.87 0.10 0.18 0.68 0.81 0.51 0.68 0.07 0.14 0.10 0.18 0.35 0.52

Materialistic 0.22 0.36 0.17 0.29 0.10 0.17 0.63 0.77 0.19 0.32 0.18 0.31 0.12 0.21 0.30 0.46

Materialistic MV 0.42 0.36 0.23 0.37 0.08 0.15 0.64 0.78 0.17 0.29 0.19 0.13 0.14 0.22 0.32 0.29

Table 4. Per-scene metrics on the NeRF datasets for the different scenes (columns) and methods (rows). Higher is better.

GARDEN KITCHEN COUNTER TREEHILL BICYCLE

mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1

Ours 0.85 0.92 0.85 0.92 0.74 0.85 0.30 0.46 0.27 0.43

SAM2 0.70 0.82 0.62 0.76 0.65 0.79 0.34 0.50 0.22 0.36

Materialistic 0.34 0.49 0.65 0.79 0.27 0.43 0.16 0.28 0.13 0.23

Materialistic MV 0.13 0.28 0.75 0.86 0.34 0.56 0.25 0.37 0.15 0.25

Table 5. Per-scene metrics on our hand-annotated images from

the MIPNeRF360 dataset for the different scenes (columns) and

methods (rows). For both metrics, higher is better.
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Figure 8. Our dataset of synthetic objects. Each object has dense material annotations.
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