Plateau-free Differentiable Path Tracing: Supplemental

Michael Fischer
University College London

m.fischer@cs.ucl.ac.uk

This supplemental contains the hyperparameters we used
for our experiments (Sec. 1), including an additional anal-
ysis of our two main parameters N and o (Sec. 2), ex-
periments on compatibility with plateau-free problems and
other renderers (Sec. 3) and the derivations of the equations
presented in the main text (Sec. 4).

1. Hyperparameters

Hyperparameters: Tab. | shows all the hyperparame-
ters we use for our main experiments for all tasks. The first
two columns are hyperparameters of our approach: N is the
number of samples we use during an optimization iteration
(for an analysis, cf. Fig. 2), and o is the kernel spread with
which we start the optimization (for an analysis, cf. Fig. 3).
Samples per pixel (spp) is the rendering setting we use for
rendering with Mitsuba, which we generally didn’t tune and
hence don’t regard as a hyperparameter of our method, but
set such that the noise is less than the signal we want to opti-
mize. We use the same spp across all path-tracing methods.
LR is the optimizer’s learning rate (we use Adam with de-
fault parameters) and the last column shows the number of
optimization iterations we run. We warm-start our ¢ anneal-
ing schedule after approx. 50% of the optimization and use
om = 0.01 for all experiments as the lowest value we de-
crease o to during the annealing schedule, in order to avoid
numerical instabilities.

Table 1. Experiment parameters (columns) for all tasks (rows).

N o) spp LR Iter.
Cup 2 0.250 16 0.01 400
SHAD. 2 0.500 32 0.02 400
OccL. 2 0.800 32 0.02 600
GI 4 0.125 16 0.05 500
SORT 16 0.500 32 0.01 4000
CAUST. 4 0.125 32 0.01 500

Average spread: = We additionally re-ran all experiments
where o # 0.5 with the average kernel spread of oy = 0.5
and show the optimization outcome in Tab. 2. Our method

Tobias Ritschel
University College London

t.ritschel@ucl.ac.uk

Table 2. Image- and parameter-space Mean Squared Error (MSE)
(rows) for o9 = 0.5 on different tasks (columns). Our method still
performs well and finds the correct parameters.

Cup OccL. GI

Img. 1.8x10~7 2.2x1073 1.0x10~* 2.4x1073
Param. 3.0x1077 7.2x1073 6.6x1072 2.2x10~*

CAUST.

still performs very well and achieves results that are com-
parable with our findings from the main text.

Additional Information: Fig. 6 shows the full view of
the GLOBAL ILLUMINATION task. We include this here as,
in the main text, we only show the inset that the optimiza-
tion sees. Note how the left wall changes color, the light
changes position, and the large box changes rotation around
its horizontal axis.

2. Parameter Analysis: N, o

Timing: We further investigate the influence of the num-
ber of samples IV on the convergence and runtime of our
method. Recall that NV is the number of perturbations, and
not the number of samples per pixel (cf. the main text and
Alg. 1 for details). Fig. 1 shows that our method’s runtime
scales linearly with the number of samples we use. This is
as the bulk of our method’s time is spent in evaluating f,
i.e., within the rendering operation. Using more samples
means evaluating f more often, which leads to an increased
runtime. The overhead of the sampling operation and the
gradient computation is small in comparison and, given the
linear increase in Fig. 1, can be neglected. We also show
Mitsuba’s runtime as the blue, dotted line. It is constant, as
Mitsuba only renders a single sample, but does so with com-
plicated methods like re-parametrization, gradient tracking
or adjoint scattering. We can thus render approx. 16 sam-
ples before reaching Mitsuba’s runtime (cf. also Tab. 3,
main text). Therefore, our runtime does not significantly
change with the number of problem dimensions (e.g., 1D
vs. nD), but with the time it takes to evaluate f.

Convergence: How does rendering with a higher number
of samples N affect the performance of our method? To an-

Avg. Iter. Time (s)

0.0 T T T
8 16 32

Number of Samples

N
~ 4

Figure 1. Runtime (vertical) of our method for different N (hori-
zontal) on the SHADOW task. We show Mitsuba’s runtime as the
blue dashed line.

swer this question, Fig. 2 shows our method’s convergence
for different values of N. A low number of N = 2 (i.e., a
single sample and its antithesis) achieves the slowest con-
vergence rate, while converge improves with more samples
and stagnates at around N = 10. The final error decreases
slightly with higher N (param.-MSE 9.5x107° for N = 2
vs. 4.7x107% for N = 16), but this improvement translates
to no visible rendering improvement due to the small scale
(1075) of the values. Using more than N = 2 hence yields
no improvement here, as the faster convergence is offset by
the longer runtime (cf. Fig. 1). This relation might, how-
ever, change for different tasks.

1.5 N=2
— N=4
— N=8
— N=16
5 — N=32
g
84
g
s
<
¥
0.0, ,
0 Iterations 150

Figure 2. Convergence comparison of our method for different N
(colored lines) on the SHADOW task.

Choosing o: Moreover, we investigate how the choice
of the initial kernel spread o affects the optimization out-
come. With otherwise equal hyperparameters, we run the
SHADOW task with o varying in [0, 1] and show the results
in Fig. 3.

1.04
m
wn
=
o
5
=
=
i
E
o
z
0.0 o o0 o
0.0 0.50 1.0

bandwidth o
Figure 3. The effect of oo (horizontal) on the optimization out-
come (vertical). We show the outcome with an enlarged camera
FOV in orange.

For very small oy, i.e., 09 < 0.2, the optimization does
not converge and produces a similar failure case to the dif-
ferentiable path tracer by moving the sphere out of the
image. This is as for o9 — 0, our method approaches
the rigid optimization by Mitsuba. The loss landscape is
not smoothed and the optimization stagnates or fails. For
oo — 1, we encounter a different failure case: the sampled
values are so far spaced out that some of them lie outside
the view frustum. As we use only N = 2 samples, it is
thus very unlikely that we sample the proximity of the true
position, leading to very noisy gradients that let our method
diverge. This issue can easily be alleviated by enlarging the
camera’s Field of View (FOV), upon which our method con-
verges again (orange dots in Fig. 3, camera FOV changed
from 40° to 60°), as the samples are then back inside the
view frustum. In general, we normalize all parameter spaces
to [0, 1] where possible, e.g., the rotation in the CUP task.

3. Compatibility

Plateau-free problems: In this section, we show that our
method is compatible with optimization problems that are
already plateau-free by design. To this end, we optimize an
image texture that is rendered onto a plane under environ-
ment illumination. The texture has dimension 128128 in
RGB space, making this a 49,152-dimensional problem.

Fig. 4 shows the reference texture and our method’s fi-
nal results, alongside the convergence curves for the image
(orange) and parameter (black) error.

Error

Iterations

Ours Reference

Figure 4. Texture optimization using our approach.

Path Tracer: Subsequently, we will use a different path
tracing engine as backbone for our method and show that
our methods also works with a different rendering back-
bone. For this experiment, we use Redner, which uses
edge-sampling to derive gradient expressions during path
tracing. As we can see from Fig. 5, this method fails simi-
larly to Mit suba, whereas our method again successfully
delivers a complete optimization and finds the correct pa-
rameters.

Initial Reference
Diff. Path Tracer Ours

Figure 5. The SHADOW task re-run with Redner as renderer.

ol

Initial Reference

Figure 6. The full view of the GLOBAL ILLUMINATION task.

4. Additional Derivations

We derive here show how we differentiate our kernel and
arrive at the equations presented in the main text.
We define our kernel as a Normal distribution in param-

eter space with mean 0, i.e.,
1 72
exp | ——=
o2 P 202

which we will then use to offset our current parameters
0" = 6 — k(7). Performing this translation with the original
kernel is equivalent to convolving directly with the trans-
lated kernel (cf. Fig. 7), which naturally also holds for the
derivative kernel. This allows us to rewrite the translated

k(1) =N(0,0) =

kernel as

K (1) =N(0,0) = —0—1% exp (—%) .

Differentiating the above equation yields
T—0 —(7—0)?
— exp ,
o3/ 2w 202
which evidently is a translated version of Eq. 11 in the main
text. To avoid clutter in the notation, we hence write

Ok’
00 (1)

0K () —T . —72
— (1) = ——=exp| —5 | .
00 o3/ 21 P 202

In order to find the Cumulative Distribution Func-
tion (CDF) of this function, we must integrate its
Probability Density Function

A

main. As explained in the o :
main text, we treat each half- AR (7)
itive halfspace to integrate to Figure 7
0.5, yielding
T —72
202 TP\ 952)

(PDF). The PDF must inte-
space separately and hence /\
which, upon integration, results in the CDF

grate to 1 over the entire do-
normalize the PDF on the pos- 0

_r2 .
—0.5eXp F +C s

where C is the integration constant on the positive halfs-
pace. Handling the negative halfspace analogously results
in the same equation, but with a flipped sign and C~ as inte-
gration constant. The fact that the CDF must be continuous,
monotonically increasing and defined in (0, 1) tells us that
C* =1and C~ = 0. To enable importance sampling with
the CDF, we must invert it into the Inverse CDF (ICDF),
which yields

202 1og(2¢) T<0. o

Pl {\/202 log2(1—€)) 7>0
Solving the domain constraints of the square-root and the
logarithm, we find that the ICDF for positive halfspace is
defined for £ € [0.5,1), whereas its negative counterpart
is defined in £ € (0, 0.5], which, given £ € (0, 1), can be
simplified to yield the final equation presented in the main

text
F7HE) = /—202log(€) -

	. Hyperparameters
	. Parameter Analysis: NN,
	. Compatibility
	. Additional Derivations

