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1 META-LEARNING

As slightly different variants of meta-learning are used for our dif-

ferent applications, we here detail their differences. We use differ-

ent variants since, in order to compute the meta-gradients, one

must backpropagate through backpropagation itself, which is a very

compute-intensive process, as higher-order gradients (more specifi-

cally, the Hessian-vector product) must be calculated throughout

the computation graph. To alleviate the computational burden this

imposes, several Model-agnostic meta-learning (MAML)-variants

that use first-order gradient approximations have been proposed.

One of those algorithms that finds use in this work is First-Order

MAML (FOMAML) [Finn et al. 2017], which approximates higher-

order gradients by replacing the Hessian with the identity-matrix

and hence updates the meta-objective with the most recent inner-

loop gradient, with significant savings on GPU memory and com-

pute time. In practice, this means that, while MAML directly opti-

mizes over the single gradient steps that are taken to reach a solution,

FOMAML approximates this high-dimensional gradient trajectory

with the local gradient of its last vertex. FOMAML has been shown

to produce results close to MAML on certain applications [Finn

et al. 2017; Nichol et al. 2018], which is commonly attributed to the

fact that ReLU networks behave almost linear in high-dimensional

spaces [Goodfellow et al. 2014], which in turn implies that their

derivatives do not carry much second-order gradient information

and can be omitted without severe performance penalties. We also

experimented with Reptile [Nichol et al. 2018], but observed no

performance improvements. For the exact algorithm setup, please

confer the following application subsections.

Note that using MAML is only compute- and memory-intensive

during the meta-training phase: for inference, we run a mere gradi-

ent descent on the model parameters, and no additional overhead

is incurred. We observed performance increase across all tasks and

applications when also meta-learning the inner-loop learning rate,

as proposed by Li et al. [2017]. We implement our meta-networks

and competitors in PyTorch [Paszke et al. 2019] and Torchmeta

[Deleu et al. 2019].

Fig. 1 shows the data splits used during each method’s training.

In General, test and train are split into disjoint sets, and the net-

work generalizes over entire instances of the data. For Overfit
and Finetune, the samples in a problem instance are split into dis-

joint sets, e.g., train- and test-angles of a Bi-directional Reflectance

Distribution Function (BRDF). For Meta, we distinguish between a

meta-train and a meta-test set (in the meta-learning literature, these

are also called context- and target-set). During completion, the inner-

loop samples from the meta-train-set, while its final performance

after completion — on which the meta-gradients are calculated —
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Fig. 1. Splitting of test and train for all four training types

is evaluated on data from the meta-test-set. However, this is not
the data used to evaluate the final model at inference time. Instead,

the same withheld test set as in General is used. We would like to

emphasize that neither training nor meta-training sees test-data,

ever, and we report all our experimental results exclusively on test

data.

2 NETWORKS AND IMPLEMENTATION DETAILS

We summarize the exact hyperparameters and algorithm setups in

Tab. 1. The following sections shortly elaborate on the choice of

models and approaches we use for the respective applications.

2.1 Textures

We use a U-Net [Ronneberger et al. 2015] Convolutional neural

network (CNN) with residual skip connections and AdaIN blocks

[Huang and Belongie 2017]. As in [Gatys et al. 2015], we optimize

for the mean absolute error of VGG matrices between the reference

exemplar and the network’s output. The architecture is similar to

Henzler et al. [2021] and we refer to their publication for the exact

network details.We use this architecture as ourmethod Overfit and
empirically determined that 1000 training iterations are sufficient

to replicate most textures faithfully.

Method General preprends a ResNet-based encoder (ResNet-50,

[He et al. 2016]) to the aforementioned U-Net in order to project

the input image into a latent space, from where the previously

mentioned U-Net decoder, conditioned on the latent code 𝑧 ∈ R64,
reconstructs the exemplar’s features.

Finetuning has been applied in recent publications to steer the

output of a general model towards more accurate representations

[Deschaintre et al. 2020; Guo et al. 2020; Henzler et al. 2021]. Note

that, for fine-tuning, we increase the learning rate by a factor of 10,

as in Henzler et al. [2021], to accelerate convergence, which makes

Finetune a strong baseline.
For our Meta-method, we found a higher number of inner-loop

steps to outperform the gains from second-order gradients, and

hence use FOMAML with 𝑘 = 15 inner-loop steps.

To show that we compare our meta-method against the best-

configured competitors, we ran several experiments to empirically

determine the best-suited optimizer and learning-rate setting. The
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Table 1. Algorithm setup and meta hyper-parameters for our experiments and the approaches we compare against.

Textures BRDF svBRDFStat svBRDFNonStat Illumination Transport

Publication Henzler et al. [2021] Sztrajman

et al. [2021]

Henzler et al. [2021] Deschaintre

et al. [2018]

Georgoulis

et al. [2017]

Zheng and

Zwicker [2019]

Type CNN MLP CNN CNN CNN MLP

Rendering — Mitsuba

Jakob [2010]

Cook-Torrance Cook-Torrance Blender PBRT style

Input RGB Image MERL Flash Image RGB Image RGB Image PSS samples

Data 500 textures Matusik [2003] Henzler et al. [2021] Deschaintre

et al. [2018]

Gardner et al. [2017] 500 Cornell box

scenes

Meta Algorithm FOMAML MAML FOMAML FOMAML MAML MAML

Gradient Order First Higher First First Higher Higher

Cosine Annealing Yes No Yes No No No

Meta-SGD Yes Yes Yes Yes Yes Yes

Meta-SGD Init. 1 × 10
−3

1 × 10
−3

1 × 10
−3

1 × 10
−3

1 × 10
−3

1 × 10
−3

Meta-Optimizer Adam Adam Adam Adam Adam Adam

Meta-Optim. LR 1 × 10
−4

1 × 10
−4

1 × 10
−4

1 × 10
−5

1 × 10
−5

1 × 10
−4

Weight Decay — 1 × 10
−6

— 1 × 10
−6

1 × 10
−6

1 × 10
−6

Inner-Loop Steps 15 10 20 15 15 8

Meta-Batchsize 5 1 3 1 1 1

Meta Train Time ∼ 2 days ∼ 3 days ∼ 4 days ∼ 4 days ∼ 2 days ∼ 4 days

Meta Train Epo. 100,000 7.6 × 10
6

80,000 200,000 220,000 180,000

Time Meta-forw. 0.022 0.00117 0.0309 0.0158 0.01233 0.0296

Time Meta Step 0.06185 0.00309 0.0742s 0.0316 0.02566 0.0592

Time Meta-Inf. 0.6185 0.0309 1.484s 0.474 0.384 0.486

Iterations Overfit 1,000 83,000 5,000 2,000 5,000 8,600

Itera. Finetune 100 1,000 1,000 500 1,000 1,000

Batchsize 4 512 4 8 8 2,000

Latent Space Dim. 64 10 64 512 512 10

Optimizer Adam Adam Adam Adam Adam Adam

Learning Rate 1 × 10
−4

5 × 10
−4

1 × 10
−4

1 × 10
−5

5 × 10
−5

1 × 10
−4

LR × Finetune 10 1 10 10 20 10

Weight Decay 1 × 10
−5

— 1 × 10
−5

— — —

Training Loss L1 VGG Log. MAE Henzler et al. [2021] Deschaintre

et al. [2018]

MSE FW KL Divergence

Table 2. Overview of all appearance reproduction applications we consider. Below, “ED” denotes encoder-decoder, “NF” is normalizing flow, “PN” is a Point-Net.

Application Input 𝐼 Output 𝐿𝜃 Domain x𝑖 Architecture 𝜃 Metric Source

Texture RGB image Infinite RGB map 2D Pos ED CNN+Noise VGG Gram 𝐿1 Ulyanov et al. [2016]

BRDF Angle pair RGB reflectance 4D Dir CNN+MLP 𝐿1 Sztrajman et al. [2021]

svBRDFStat Flash image Infinite BRDF map 2D Pos, 4D Dir ED CNN+Noise VGG Gram 𝐿1 Henzler et al. [2021]

svBRDFNonStat Flash image Finite BRDF map 2D Pos, 4D Dir ED CNN Re-render 𝐿1 Deschaintre et al. [2018]

Illumination RGBN image RGB HDR Envmap 2D Dir ED CNN Re-render 𝐿1 Georgoulis et al. [2017]

Transport PSS sample Light path + prob. 𝑛-D Pos/Dir PN MLP+NF NLL Zheng and Zwicker [2019]

results of these experiments are depicted in Tab. 2, while we show

results on unseen test-data in Fig. 2.

2.2 BRDFs

Much work was devoted to create, efficiently compress, interpolate

and re-sample (spaces of) BRDFs; for a general survey we refer to

Guarnera et al. [2016]. Many applications revolve around represent-

ing a full BRDF in high quality from a small set of measurements.

When these are taken in a suitable pattern [Nielsen et al. 2015], a

linear basis found through Principal component analysis (PCA) can

be used as an encoding. Recently, Rainer et al. [2019] showed that

NN-based encoding of radiance data is a viable alternative to tradi-

tional, PCA-based methods. Moreover, Hu et al. [2020] and Rainer

et al. [2020] encode multiple BRDFs and Bidirectional texture func-

tions (BTFs) in a single network, respectively. Finally, Sztrajman

et al. [2021] show that a compact two-layer Multi-layered percep-

tron (MLP) can learn the mapping between angular measurements

and RGB reflectance and is able to faithfully reproduce BRDFs.
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Table 3. Different learning-rate and optimizer comparisons for the baseline

methods we compare against. We choose the best-performing optimizer,

respectively.

0.1 0.01 0.001 1 × 10
−4

1 × 10
−5

Finetune, Adam — 0.246 0.205 0.209 0.309

Overfit, Adam — — 0.188 0.183 0.598

Finetune, SGD 0.643 0.327 0.289 0.416 —

Overfit, SGD 0.287 0.259 0.515 — —

General MetaFinetuneOverfit Reference

Fig. 2. Inference results for unseen test textures from the classes Grass,

Marble, Rock, Wood, Rust (top to bottom).

To tackle the task of BRDF reconstruction, we use a simple two-

layer MLP with 21 neurons per hidden layer, as described by Sztra-

jman et al. [2021], as method Overfit. The network receives ran-

domly sample batches of light- and view-direction in Rusinkiewicz [1998]

parametrization and then outputs the logarithmic RGB reflectance

for these query directions. We train our competitor Overfit with
the official codebase from [Sztrajman et al. 2021] with one network

per MERL-material.

For General, we take inspiration from [Hu et al. 2020] and create

a latent space of BRDFs by training a encoder CNN (for the exact

details of the architecture we refer to their publication) that con-

sumes the entire BRDF measurement of 180×90×90 RGB triplets at

once. For the encoder, we use the official code from Hu et al. [2020],

which was kindly provided by the authors. To enable a fair compar-

ison between all methods, we use the two-layer MLP of Sztrajman

et al. [2021] as a decoder. For Finetune, we fine-tune the output

General MetaFinetuneOverfit Reference

Fig. 3. Inference results for different test BRDFS from the MERL database.

of General for 1000 iterations, which amounts to seeing each mea-

surement in the data twice. We found that increasing the learning

rate had no visible benefits and hence did not modify it.

Our Meta-method uses the same base architecture as Overfit and
[Sztrajman et al. 2021], a two-layer MLP with 21 neurons per hidden

layer. We observed that incorporating second-order gradients into

the optimization leads to more consistent results across all tasks

and therefore use MAML with 𝑘 = 10 inner-loop steps, which is

made possible by the lightweight architecture (675 parameters in

total). While using a meta-batchsize improved generalization for

the previous task, we found that averaging the meta-gradients over

batches here leads to a decrease in result quality and hence use a

meta-batchsize of one. We use the classic 80%-20% train-test split for

training, both for theMERLmaterials and the angular measurements

within a MERL material, and show results on unseen test BRDFs in

Fig. 3.

2.3 Stationary svBRDFs

Classically, spatially-varying BRDF (svBRDF) were acquired by op-

timization [Lensch et al. 2003] involving appropriate priors [Dror

et al. 2001; Lombardi and Nishino 2012; Nam et al. 2018], optimiza-

tion in a neural representation [Aittala et al. 2016; Liu et al. 2017]

and finally methods that solve the task using a feed-forward net-

work [Henzler et al. 2021]. Optimization can be performed in the

pixel- [Aittala et al. 2016], or Neural network (NN) basis [Henzler

et al. 2021]. We again use an encoder-decoder approach to solve

this problem, similar to the one motivated by Henzler et al. [2021].

Their method uses an encoder-decoder architecture, where the en-

coder first projects a flash-illuminated image of a material into a

latent space. The latent code is then used to condition the decoder,
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Fig. 4. Results for unseen test svBRDFs. On the right, we show the parameter maps produced by Meta: diffuse albedo, normals, roughness and specular albedo.

We provide a top-light illuminated rendering with those maps in the rightmost column. We do not show the parameter maps of the other approaches for

brevity and refer to [Henzler et al. 2021]. Note that all maps must be free of baked shading, as they are stationary by construction.

which is additionally provided with noise (for details, we refer to

the publication) to then infer the svBRDF parameters. More specif-

ically, the decoder outputs parameter maps of the Cook-Torrance

[1982] reflectance model, i.e., diffuse and specular albedo, roughness

and height, which is differentiated to a normal map. The generated

svBRDF maps are then rendered by a differentiable renderer, assum-

ing collocated camera and light, flat geometry and stationarity, as

elaborated on by Aittala et al. [2016].

We implement method General with the public code provided

by Henzler et al. [2021], without fine-tuning, and train until con-

vergence. For Finetune, we follow the method proposed in [Hen-

zler et al. 2021] and fine-tune the learned general decoder for 1000

epochs, with the learning rate increased by a factor of 10. For

Overfit, we train the decoder of General only, as there is no need

to span a latent space when overfitting only a single exemplar. We

additionally let the model learn the rotation parameters of the flash

highlight, which, surprisingly, does not always put the flash in the

center. We attribute this to the fact that minimizing the error be-

tween gram matrices, which is one of the main parts of the training

loss, matches exemplar statistics globally and discards information

about relative spatial layout. Note that the ratio of fine-tuning to

over-fitting is 20%, which is remarkable.

Due to GPU memory constraints, our Meta-method for this ap-

plication uses FOMAML and limits training to the decoder, with

𝑘 = 20 gradient steps and ameta-batchsize of 3.We observed slightly

improved performance when using latent codes generated by a pre-

trained encoder over constant latents, which can be interpreted

as a data pre-processing step. We also experimented with lower

amounts of inner-loop steps, but the results were not convincing.

We attribute this to the ambiguity and under-constrained nature of

the problem of estimating svBRDFs from a single image: While it

may be relatively simple for a model to quickly learn RGB colors

or statistics alone, inversely solving the rendering operation for

the svBRDF-maps that created said colors or statistics is a much

harder task. We note that it is not uncommon to use a large number

of inner-loop steps when meta-learning on ambiguous problems:

Tancik et al. [2021] use 64 steps on a Reptile-model to meta-learn

an MLP that approximates neural radiance fields.

We show inference results for unseen test svBRDFs in Fig. 4. We

further show the parameter maps produced by our method and

confirm that they are free of baked shading with a re-lighting. This

can also be proven by construction, as only non-stationary parame-

ter maps can bake non-stationary shading into albedo. Stationary

maps (like the ones used here) can, by construction, not bake-in

non-stationary shading, as explained by Aittala et al. [2016] and

Henzler et al. [2021]. Proving this, we have re-lit our results follow-

ing the protocol in [Henzler et al. 2021] and achieved relit-errors

(VGG Gram L1, lower is better) of 0.25 / 0.10 / 0.12 / 0.16 for General,
Overfit, Finetune, Meta, respectively.

2.4 Non-Stationary svBRDFs

To estimate non-stationary shading parameter maps, we use the

approaches presented by Deschaintre et al. [2018]. For the results

produced by method General, we run their publicly available model

implementation. For all other methods, we use a PyTorch-port of

their original Tensorflow implementation. All methods use their pro-

posed rendering-loss, which is crucial for accurate reconstruction.

For Overfit, we run the network for 2000 iterations on randomly

created scene configurations (as in the original publication, we use 3

diffuse and 6 specular scenes and aim to re-create all other settings

as closely as possible). Method Finetune starts from General’s pa-
rameter maps and refines these, in equal fashion, for another 500

iterations. The ratio for fine-tuning to over-fitting thus is 25%, which
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is remarkable. We have experimented with different learning rates

and, similar to our previous experiments (e.g., Texture) found a

learning rate multiplied by factor 10 to achieve fastest convergence.

Even higher learning rates, e.g., 1×10−3, lead the network to diverge
and produce uniformly colored shading maps only. Lower learn-

ing rates, e.g., 5 × 10
−5

require lots of training iterations (roughly

50% of Overfit) to achieve satisfactory performance, which some-

what defies the purpose of fine-tuning. Meta uses FOMAML as

meta-learning algorithm, as the sheer size of the network (General
has over 80 million trainable parameters) makes computing higher-

order gradients through several inner-loop steps computationally

intractable. We use 𝑘 = 15 steps for the reported results. We alterna-

tively experimented with running a lower-resolution version of the

training process (128× 128px) and a higher number of MAML inner-

loop steps, but found this to de-stabilize training. For all methods, we

train and evaluate on the publicly available data from Deschaintre

et al. [2018].

2.5 Illumination

Prior work has predicted parametric or general illumination us-

ing optimization [Li et al. 2020; Park et al. 2020; Wei et al. 2020],

particularly indoors [Gardner et al. 2019; Garon et al. 2019; Song

and Funkhouser 2019; Weber et al. 2018] but also outdoors [Hold-

Geoffroy et al. 2019], and even as a volume [Srinivasan et al. 2020;Wang

et al. 2021].

In order tometa-learn this task, we train on the Laval HDRDataset

[Gardner et al. 2017], which provides a wide variety of illumination

conditions. As the high spatial resolution of the provided envmaps

quickly makes computation intractable, we use a down-sampled

version of the dataset at 32 × 64 pixels. Our architecture for encod-

ing illumination is inspired by Rematas et al. [2016] and similarly

uses a U-Net-like encoder-decoder architecture with skip connec-

tions. Our encoder takes as input a 128 × 128 RGBN rendering of

a sphere illuminated with the respective environment map. The

down-branch extracts the image information through a cascade

of 3 × 3 convolutions, all followed by ReLU activation and Batch

normalization (BN). As in Gao et al. [2019] and Rematas et al. [2016],

we restrict the use of BN to the encoder part and find this to achieve

higher output fidelity than applying BN on the full architecture. To

avoid checkerboard artefacts, we use bilinear upsampling in the

decoder branch, followed by a zero-padded 3 × 3 ReLU-convolution,

until we finally arrive at the original spatial resolution of 128 × 128,

which we spatial-pool to the desired envmap resolution of 32 × 64.

Additionally, we found it beneficial to let the network operate in

log-space and also append a positional-encoded (6 encoding func-

tions) coordinate grid to each input. We use this architecture for all

methods.

Similarly to the previous applications, we train Overfit on one

problem instance only, which it overfits in roughly 5,000 itera-

tions. While over-fitting for more iterations is entirely possible

and will result in a slight performance improvement, we found the

performance-gain per increased time to diminish significantly af-

ter 5,000 iterations and empirically chose to stop the training then.

Similarly, Finetune needs around 1,000 iterations to fully nudge

Table 4. Timing measurements for the Transport application in seconds.

Regul
ar

Gener
al

Overf
it

Finet
une

Meta

Prepare Rays 0.0s 4.1s 4.1s 4.1s 4.1s

Model Inference 0.0s 0.04s 362.2s 42.1s 0.5s

Trace Image 164.0s 164.0s 164.0s 164.0s 164.0s

Total 164.0s 168.1s 530.3s 210.2s 168.6s

the output of General to convergence. We experimented with sev-

eral learning rate configurations for the fine-tuning experiment

and chose to use the best-performing optimizer (Adam, learning

rate 1 × 10
−3
). Note that, as in previous experiments, we again

increase the fine-tuning learning rate, which makes Finetune a

strong baseline (please also cf. Tab. 1). For Meta, we run MAML

with 𝑘 = 15 inner-loop steps. Interestingly, this application required

us to change the outer-loop learning rate for Meta from 1 × 10
−4
,

as in previous experiments, to 1 × 10
−5
, to stabilize training. We

attribute this to the high dynamic range of the envmaps and the

consequently high values of the gradients. The Meta-SGD init of

0.001 did not require changing.

2.6 Transport

To (meta-) learn the light transport in a scene, we use the method

presented by Zheng and Zwicker [2019], where a normalizing flow is

used to warp the renderer’s Primary Sample Space (PSS) in order to

produce PSS samples that reduce rendering variance. In this scenario,

the normalizing flow can be interpreted as an importance model

that learns to produce samples proportional to the scene-dependent

radiance, and can then, once training is finished, be sampled from.

We re-implement the normalizing flow architecture described in

Zheng and Zwicker [2019], which is a variant of RealNVP [Dinh

et al. 2016]. We use 8 coupling layers, each of which consists of two

residual-MLPs with 40 neurons per layer and batch normalization.

As in Zheng and Zwicker [2019], we pre-train the model to achieve

the identity warp and use the resulting weights as initialization for

all further experiments to speed up convergence (note that this pre-

training cost is excluded from all timings we report). Moreover, we

found it beneficial to include an additional ActNorm layer [Kingma

andDhariwal 2018] and use it for all methods. The network is trained

with batchsize 2000. To keep computation tractable, we limit PSS

warping to𝑚 = 2, i.e., our model learns importance distributions for

the first two bounces. For all subsequent bounces, we continue with

randomly sampled rays. This is an established technique (cf. [Müller

et al. 2019; Zheng and Zwicker 2019]), as later bounces contribute

less to the final render and hence are not as amenable to importance

sampling.

For our experiments, we use a PBRT-style renderer written in

C++ and integrated into Python via pybind11. At inference time, the

renderer consumes PSS coordinates created by the trained normal-

izing flow, whereas, for the data creation process, it is also able to

return the PSS coordinates that have been used to render the scene.

To generate the data for the corresponding PSS warps, we create

a set of Cornell-box-like scenes (Fig. 8), with a random number
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Fig. 5. Inference results for svBRDFs from [Deschaintre et al. 2018]. We show the shading parameter maps diffuse albedo, normals, roughness and specular

albedo and a re-lighting. Note how Overfit outputs a high specular albedo and a reduced diffuse albedo, something that (mostly) doesn’t occur in other

methods. This is because Overfit cannot benefit from priors over the reflectance data and hence only adjusts the maps to fit the rendering.

of spheres (between 1 and 5) with random materials (diffuse color,

reflective metal, refractive glass) and a random top-light configu-

ration. We trace all these scenes at resolution 120 × 120 pixels (cf.

Tab. 4 for timing) to ease computation, but ask the reader to note

that path-tracing with the final flow model can be carried out at

any resolution. We store all paths traversed during rendering and

subsequently re-sample those that carry high throughput to achieve

approx. 20 epp (examples-per-pixel, a SPP metric that originates

from omitting the pixel-filter and is effectively the average spp, cf.

[Zheng and Zwicker 2019]), which leads to a 6-dimensional dataset

per scene (recall that PSS dimensionality is 2(𝑚 + 1)) that consists
of 120 × 120 × 20 samples.

For Overfit, we adhere to the training guidelines published in

Zheng and Zwicker [2019] and train each network for 60 epochs

(this corresponds to approx. 8,600 gradient steps). As usual, over-

fitting produces one network instantiation per scene. For General,
we want to be able to train a network that generalizes across scenes.

To allow this, we prepend the previously discussed flow model with

a PointNet (PN) [Qi et al. 2017] -like encoder that consumes the

already resampled dataset. Using the resampled PSS coordinates as

input effectively allows the encoder to focus on encoding and out-

sources the task of deciding which samples are important to a pre-

processing stage that is equivalent for all methods. Our PN encoder

uses three linear layers with 64, 128 and 512 neurons, respectively,

batch normalization and pReLU activation units, and outputs a

latent code on which we then condition the flow by concatenation.

As in our previous experiments, Finetune again starts from the

output of General and re-fines the estimated density for a total of

1,000 gradient steps. Meta is trained with eight MAML inner-loop

steps and consumes batches of size 10,000. We found the higher

batchsize necessary to stabilize meta-training with a higher number

of inner-loop steps. Note that even after all inner-loop steps have

been completed, Meta still has seen much fewer data samples (Meta:
8 × 10,000 = 80,000) than its competitors, that are presented with

the entire dataset of approx. 288,000 samples.
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Fig. 7. Relighting results with unseen environment maps from the test-set. The top row shows re-renderings illuminated by the different method’s outputs,

which we display in the bottom row. Note how all methods achieve crisp, hard shadows, indicating that the high dynamic range of the illumination is matched

well, but only optimization-based methods can regress fine nuances, such as the shading gradient in the bottom inset.
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