
Metappearance: Meta-Learning for Visual Appearance Reproduction

MICHAEL FISCHER, University College London, United Kingdom

TOBIAS RITSCHEL, University College London, United Kingdom

Textures
Speedup: 342.5x

Stationary svBRDFs
Speedup: 348.0x

svBRDFs
Speedup: 384.6x

Illumination
Speedup: 347.9x

BDRFs
Speedup: 4554.9x

Light transport
Speedup: 745.3x

O
ur

s
O

ve
rf

it

Fig. 1. We propose meta-learning for a wide range of appearance reproduction tasks. Given as few as 10 optimization steps, our method (top in each subfigure)

achieves quality comparable to overfit-approaches (bottom in each subfigure) that take orders of magnitude more training iterations.

There currently exist two main approaches to reproducing visual appearance

using Machine Learning (ML): The first is training models that generalize

over different instances of a problem, e.g., different images of a dataset.

As one-shot approaches, these offer fast inference, but often fall short in

quality. The second approach does not train models that generalize across

tasks, but rather over-fit a single instance of a problem, e.g., a flash image

of a material. These methods offer high quality, but take long to train. We

suggest to combine both techniques end-to-end using meta-learning: We

over-fit onto a single problem instance in an inner loop, while also learning

how to do so efficiently in an outer-loop across many exemplars. To this

end, we derive the required formalism that allows applying meta-learning

to a wide range of visual appearance reproduction problems: textures, Bi-

directional Reflectance Distribution Functions (BRDFs), spatially-varying

BRDFs (svBRDFs), illumination or the entire light transport of a scene. The

effects of meta-learning parameters on several different aspects of visual ap-

pearance are analyzed in our framework, and specific guidance for different

tasks is provided. Metappearance enables visual quality that is similar to

over-fit approaches in only a fraction of their runtime while keeping the

adaptivity of general models.

Additional Key Words and Phrases: Visual Appearance; Deep Learning;

Meta-Learning; BRDFs; svBRDFs; Light Transport.

1 INTRODUCTION

Reproduction of visual appearance [Dorsey et al. 2010] is a key

part of Computer Graphics that has achieved new levels of simplic-

ity, speed and accuracy thanks to recent developments in Machine

learning (ML). The classic use of ML for appearance reproduction

was to capture light or materials from very little input, sometimes

only single images [Deschaintre et al. 2018; Georgoulis et al. 2017],

without access to ground truth maps. Approaches that are capable

thereof usually train for a long time on large datasets and achieve

Authors’ addresses: Michael Fischer, University College London, United Kingdom,

m.fischer@cs.ucl.ac.uk; Tobias Ritschel, University College London, United Kingdom,

t.ritschel@ucl.ac.uk.

impressive levels of generalization, often due to Convolutional neu-

ral networks (CNNs) that recognize patterns in the data. Unfortu-

nately, this generality comes at the price of not matching the target

precisely: we might get a great looking Bi-directional Reflectance

Distribution Function (BRDF) or spatially-varying BRDF (svBRDF)

from a single image, but it might not exactly match the input.

More recently, a second line of research has evolved, where no

attempt is made to generalize over a large dataset, and, instead, non-

linear optimization and differentiable rendering are used to explain

visual appearance in input images [Gatys et al. 2015; Mildenhall et al.

2020; Rainer et al. 2019]. These methods minutely match the refer-

ence, but need many input observations, take long to train and can

be slow to execute. Typically, such approaches use point-operations,

e.g., Multi-layered perceptrons (MLPs), rather than CNNs.

A first step to combine these two training paradigms was intro-

duced by adapting the output of a model from the general class in

a second, non-end-to-end step, the so-called fine-tuning or post-

refinement stage [Deschaintre et al. 2020; Gao et al. 2019; Guo et al.

2020; Henzler et al. 2021]. Approaches that use fine-tuning usu-

ally run an additional number of gradient steps (in the order of

magnitude 10
3
) towards a specific target, which greatly improves

reconstruction quality, but inflates runtime to the order of minutes,

whereas feed-forward CNNs operate in milliseconds.

A dilemma materializes: Should one rather make a user wait in

order to provide them with high quality output, or would it be better

to provide fast, interactive results that might be of inferior quality?

Both solutions are unsatisfactory, which is why in this work, we aim

to diminish this quality-speed-gap and provide quality that is a) close

to model-overfitting or fine-tuning, and b) available at interactive

runtimes, close to those of general feed-forward networks.

We achieve this by harnessing the power of meta-learning: build-
ing on the MAML algorithm [Finn et al. 2017] from the machine

learning community, our frameworkMetappearance uses two nested

optimization loops, where the outer loop is sequentially presented

1:2 • Michael Fischer and Tobias Ritschel

with all exemplars in a (training) dataset. For each exemplar, the

inner loop is then tasked with over-fitting a model onto this specific

exemplar. Characteristically, the inner loop operates under the con-

straint of a very limited number of available gradient descent steps,

typically around 10 only. Metappearance hence learns to efficiently

drive the inner optimization towards a specific target, but still is

able to exploit coherency and priors in the data due to knowledge

gathered in the outer loop.

In this work, we present a framework that formalizes the applica-

tion of meta-learning to the task of visual appearance reproduction.

Importantly, we do not propose new visual appearance methods or

new loss functions, nor do we compare methods or analyze their

properties. In fact, quite the contrary is true: we keep the methods

the same, but instead propose a different way of training them. By

comparing our approach against “traditional” training paradigms,

we showwhich types of applications can benefit frommeta-learning

and explore the implications on performance and quality. We vali-

date that Metappearance outperforms mere general inference fol-

lowed by fine-tuning through ablation- and convergence-studies.

Additionally, we, for the first time in the graphics literature, make

the connection between meta-learning, model compression and data

efficiency. We show that Metappearance speeds up faithful appear-

ance reproduction by several orders of magnitude, while keeping all

desirable properties of the respective base approaches and similar

visual quality.

In summary, our contributions are

• Metappearance
1
, a model that adapts to new, unseen visual

appearance tasks in only a few steps of gradient descent.

• Optimizing for a fast and accurate optimizer of this model.

• Instances of thismodel that accuratelymatch texture, BRDFs,

svBRDFs, illumination, or light transport orders of magni-

tude faster than strong baselines, at comparable quality, and

• An analysis of our method’s properties, its convergence and

its behaviour under ablation.

2 PREVIOUS WORK

2.1 Visual Appearance

We consider visual appearance reproduction, the task of generat-

ing plausible and accurate visual patterns across all positions and

orientations from evidence captured for some angles and locations.

Ignoring angle and considering an exemplar’s statistics, we would

talk about appearance as texture [Efros and Leung 1999; Gatys

et al. 2015; Julesz 1975]. When angle matters, we would call this

Bi-directional Reflectance Distribution Function (BRDF) [Guarnera

et al. 2016; Ngan et al. 2005] and when both space and orientation

are considered, spatially-varying BRDF (svBRDF) [Dana and Wang

2004]. Guarnera et al. [2016] summarize these approaches. Textures

[Gatys et al. 2015; Ulyanov et al. 2016], BRDFs [Georgoulis et al.

2017] and svBRDFs [Deschaintre et al. 2018] have all been acquired

and represented by means of ML, for which Tewari et al. [2020] pro-

vide a survey. We defer discussion of the specific existing solutions

for all those sub-problems to Sec. 4.1.

1
Our source code will be available at https://github.com/mfischer-ucl/metappearance.

2.2 Learning

More important to our problem is how the different methods are

trained, i.e., optimized, given either the information of a single

instance or an entire set of exemplars (Tab. 1).

Table 1. Different ways to optimize for visual appearance reproduction.

General Fast Accurate Compact

General ✓ ✓ ✕ ✕

Overfit ✕ ✕ ✓ ✓
Finetune ✕ ✕ ✓ ✕

Meta (ours) ✓ ✓ ✓ ✓

General Learning. A typical paradigm is to collect a training

dataset, say, 2D images, to curate them with appearance super-

vision, e.g., BRDF parameters, and to learn a mapping from the

image to those parameters, for example through a CNN [Georgoulis

et al. 2017]. Often, such methods create a latent space. While it is

a strength that this space will mostly contain valid exemplars, it

comes at the expense of a bottleneck, reducing specific details. In

simple words, a 100-dimensional latent space can make sure every

latent code is a grass texture, but it cannot represent the exact loca-

tion of 200 grass blades in an image. Examples of such approaches

include work by Henzler et al. [2020] (texture), Georgoulis et al.

[2017] (BRDF) or Deschaintre et al. [2018]; Gao et al. [2019]; Guo

et al. [2020]; Kuznetsov et al. [2019] (svBRDF) or Bako et al. [2019];

Huo et al. [2020]; Zhu et al. [2020, 2021] (light paths). These methods

generalize well to new data, but do not exactly match the test-time

input, and hence are general and fast, but not accurate, as per the
taxonomy established in Tab. 1. Moreover, they often require an

encoder- and decoder branch, which makes them not compact. We

call these General and formalize them in Sec. 3.2.

Over-fit Optimization. A second, more classical approach is to not

seek generalization, but to fit a model to samples of a specific prob-

lem instance. This technique has seen a recent increase in popularity

due to the emergence of coordinate-based neural representations,

and often is used in conjunction with MLPs. Examples are numerous

and include most works related to Neural radiance fields (NeRF)

[Mildenhall et al. 2020] as well as others for texture [Kuznetsov et al.

2021], BRDFs [Sztrajman et al. 2021], svBRDFs [Zhang et al. 2021]

or the entire light transport [Müller et al. 2019; Zheng and Zwicker

2019]. We call these methods Overfit and define them in Sec. 3.3.

Most Overfit approaches are accurate and compact (they usually

do not require an encoder, as they do not need to generalize), but

neither fast to train nor general.
Fine-tuning. A combination of above approaches is sometimes

used, where first a general network is trained and then, when the

target instance is known, is optimized a second time [Deschaintre

et al. 2020; Henzler et al. 2021]. Some have employed optimization

in latent space [Tan and Mayrovouniotis 1995] while keeping the

rest of the network fixed [Gao et al. 2019; Guo et al. 2020; Kang

et al. 2018, 2019], or in pixel space after a user-adjusted number of

iterations, aiming to fit the target perfectly. We here name these

Finetune and define them in detail in Sec. 3.4. Approaches that use

fine-tuning or post-optimization usually are accurate, but neither

https://github.com/mfischer-ucl/metappearance.

Metappearance: Meta-Learning for Visual Appearance Reproduction • 1:3

fast (post-refinement usually happens at non-interactive runtimes)

nor general (once the model is fine-tuned, it cannot be used for

general inference anymore). Most fine-tuning models are compact,
as it is usually enough to store the fine-tuned decoder and the

corresponding latent code ([Henzler et al. 2021]), although this is

not always the case ([Deschaintre et al. 2020].

Hyper- and meta-learning. Hyper-networks produce weights of
another network [Ha et al. 2016]. This has been applied to appear-

ance [Bi et al. 2021; Maximov et al. 2019], BRDFs [Sztrajman et al.

2021] and NeRF-like representations [Sitzmann et al. 2019]. Meta-

learning, instead, does not directly produce the parameters of an-

other network, but guides the optimization that drives the inner

learning. This optimization is often based on gradient descent, so

the outer optimization produces setting such as start values and step

sizes. Sometimes, the gradient rule itself is learned [Adler and Ök-

tem 2018; Ravi and Larochelle 2016]. Applications of meta-learning

were proposed for geometry [Sitzmann et al. 2020], super-resolution

[Hu et al. 2019] and animation [Wang et al. 2021], layered depth

images [Flynn et al. 2019], as well as for NeRF by Bergman et al.

[2021] and Tancik et al. [2021].

Approaches that use meta-learning are fast and general by con-

struction, as they can run inference on new, unseen samples in only

a few gradient steps. As we will show in this work, meta-learning

for visual appearance reproduction is also accurate, as its output
is close to overfit- or fine-tuning quality. Moreover, meta-learning

enables compactness, as the model initialization and optimization

themselves are learned, and hence do not need to rely on latent

codes produced by, e.g., bulky encoder networks. We would not

be aware of work attempting to model visual appearance using

meta-learning, as we set out to do in Sec. 3.5.

3 OUR APPROACH

After introducing the problem we solve (Sec. 3.1), we provide a

common formalization of three previous solutions (Sec. 3.2, 3.3 and

3.4), and finally introduce Metappearance (Sec. 3.5).

3.1 Problem statement

We now discuss representing visual appearance, its parametrization,

and finally its optimization.

Representation. We represent visual appearance as 𝐿𝜃 (x|𝐼), a ra-
diance function of a positional-directional coordinate x, conditioned
on input 𝐼 and parametrized by the tunable vector 𝜃 . The coordinate

x can be two-, three- or higher-dimensional and might be positional,

directional or both. The condition 𝐼 varies per application and could

be a single image, sparse measurements or light paths.

Parametrization. Parameterizing 𝐿𝜃 by 𝜃 is possible in a large

number of ways, for instance through a plain, pixel-based RGB

image, spatial data-structures, or a more implicit representation,

like a CNN or an MLP, and the parametrization might make use

of hard-coded, rendering-like operations. For now, we deliberately

do not specify this further and only require 𝐿 to be differentiable

w.r.t. the parameters 𝜃 . Supplemental Tab. 2 will give examples for

instances of this model which we will evaluate in our experiments.

Optimization. Let us assume a scalar function Loss(𝜃,𝑇) that is
low if 𝜃 explains the data𝑇 well and high otherwise. We will specify

different ways to define this loss, leading to different approaches

of reproducing visual appearance. Let us further assume that we

have access to an optimizer function Learn(𝜃0, 𝛼,𝑇 , Loss) which
performsGradient descent (GD) that starts at𝜃0 to change parameter

𝜃 with stepsize 𝛼 so as to minimize the loss Loss. This procedure is

given in Alg. 1, where 𝑛
l
is the number of GD iterations.

Algorithm 1 Classic learning: The function grad(·) differentiates
its first argument (an expression) with respect to the second.

1: procedure Learn(𝜃0, 𝛼 , 𝑇 , Loss)
2: 𝜃 = 𝜃0
3: for 𝑖 ∈ {1, . . . , 𝑛

l
} do

4: 𝜃 -= 𝛼 · grad(Loss(𝜃 ,𝑇), 𝜃)
5: end for
6: return 𝜃

7: end procedure

Combining Loss and Learn leads to different methods. In classic

learning, the start parameters and the optimization step size both

are hyper-parameters that need to be chosen by the user. We will see

that Meta-learning chooses these optimally through optimization.

3.2 General

General methods, that attempt to map a condition 𝐼 directly to

appearance, use the loss described in Alg. 2:

LossGeneral (𝜃,𝑇) = E𝑖∈𝑇 [Δ(𝐿𝜃 (x𝑖 |𝐼𝑖), 𝐿𝑖)] (1)

where Δ(· , ·) here, and in the following, can refer to any norm.

Algorithm 2 Classic loss. The function sample(·) takes a set as an
argument and returns a random index into that set.

1: procedure Loss(𝜃 , 𝑇)
2: 𝑐𝑜𝑠𝑡 = 0

3: for 𝑖 ∈ {1, . . . , 𝑏} do
4: 𝑗 = sample(𝑇)
5: 𝑐𝑜𝑠𝑡 += Δ(𝐿𝜃 (x𝑗 |𝐼 𝑗), 𝐿𝑗)
6: end for
7: return 𝑐𝑜𝑠𝑡/𝑏
8: end procedure

Visual appearance problems usually are ambiguous: One 𝐼𝑖 can

typically be explained by more than one parameter vector 𝜃 . Over

the course of training, a General optimization sees many different

conditions 𝐼𝑖 and hence can build priors about what solutions are

more likely than others. These priors are then used to generalize to

new conditions under new angles and positions, e.g., a new 2D photo

of a sphere that can then provide reflectance for new 3D angles and

positions. However, the encoding of these priors that then handle

variations over 𝐼 must be performed under the constraint of a finite

budget of parameters. In typical applications, this results in more

or less subtle forms of smoothing: a generated BRDF does not quite

resemble the BRDF the input specifies, some spatial details are lost

in svBRDFs, etc. We will show examples of this in Sec. 4.1.

1:4 • Michael Fischer and Tobias Ritschel

3.3 Over-fitting

Differently, in over-fitting, the loss is

LossOverfit (𝜃,𝑇) = E𝑖∈𝑇 [Δ(𝐿𝜃 (x𝑖 |𝐼), 𝐿𝑖)] (2)

where, importantly, 𝐼 is constant and does not depend on 𝑖 . This

task is comparatively easy, as the network only has to deal with

one specific input. Consequently, results are often of higher quality

than in the General setting. However, the optimization now lacks

the synoptic approach that sees all instances and can use this “big-

ger picture” to build priors and make do with fewer information

in lower time. Typically, over-fitting approaches need many itera-

tions to train, take from minutes to hours to converge, and often

require further regularization, e.g., by physical constraints, to avoid

overfitting to specific training positions and directions.

3.4 Fine-tuning

Both overfitting and generalization can be combined in a trivial

way: First run a general method on the input, second, optimize the

output so that it resembles the input even more. Fine-tuning usually

starts from initial parameters 𝜃0, that have been trained across many

inputs (e.g., the converged state of a general model, cf. Sec. 3.2), and

then optimizes these for a fixed target, as in over-fitting (Sec. 3.3),

with a fixed step size 𝛼F. This means to compute

Learn(Learn(𝜃0, 𝛼G,𝑇 , LossGeneral), 𝛼F,𝑇 , LossOverfit). (3)

While the general step can be re-used across several inputs, the

subsequent fine-tuning (essentially, over-fitting) optimization must

be repeated for each new input. Finetune is faster than Overfit,
as only the inner optimization needs to be executed for inference,

while the outer step is a feed-forward network execution, and some-

times is accelerated further by increasing the learning rate 𝛼F. Still,

optimization usually takes in the order of minutes, i.e., it is slow

compared to a single feed-forward execution of the general network

that typically would take milliseconds. Moreover, the solution might

diverge from the priors that informed the first step. By jointly train-

ing over both the general projection and the fine-tuning stage, we

overcome these issues in quality and speed, as explained next.

3.5 Meta-learning

A general model’s training is agnostic to the fact that later fine-

tuning iterations will be used to further improve the results. This

drives the General projection step towards learning unnecessarily

detailed representations while missing other important features and

over-smoothing the space (cf. Sec. 3.2). The General step hence will
try to incorporate features that fine-tuning might include anyway,

and subsequently disregard other, more general elements that the

fine-tuning operator might miss.

If we do not know how to trade those properties, could we instead

learn how to do that? Could we learn how to perform an optimiza-

tion optimally? To do that, we need i) a domain to optimize over,

ii) to understand what is “optimal”, and iii) an actual algorithm. We

will now look into these aspects.

As our optimization domain, we consider meta learning of both

the initial solution 𝜃0 as well as a per-parameter step size 𝛼 . Both

the initialization and the step sizes are fixed between tasks and stay

constant at test time.We stack 𝜃0 and 𝛼 into ameta parameter vector,

Init
Meta init Result 1

Result 2

Fig. 2. Learning the init: Trajectories for Meta and Overfit for the example

task of BRDF representation. The dotted line denotes inner optimization.

Note how the dotted trajectories for Meta are shorter, i.e., faster learning.

denoted as 𝜙 = {𝜃0, 𝛼}. Meta learning can then be formalized
2
as a

new loss (Alg. 3):

LossMeta (𝜙,T) = E𝑖∈T [LossOverfit (Learn(𝜙,𝑇𝑖 , LossOverfit),𝑇𝑖)] .
(4)

The first thing to note is that the loss is defined onmeta-parameters

𝜙 and that it calls Learn with these, to quantify how suitable they

are for an inner learner. Second, it samples from the space of all

tasks T (e.g., multiple BRDFs), not from a single task. The sampled

task 𝑇 is the same for meta-train and meta-test; the same for the

call to Learn and to Loss. Because sample inside the loss function

is randomized, different positions and directions are used for meta-

test and meta-train. Doing so, parameters that generalize across

positions and directions inside one task are advantaged.

To actually perform meta-learning, we

Learn(𝜙0, 𝛼M,T , LossMeta),
i.e., perform common learning with an advanced loss and a meta-

initialization, 𝜙0, as well as a meta step-size 𝛼M.

Algorithm 3 Meta-learning involves a loss that depends on the

hyper-parameters of calling the function Learn on the actual task.

1: procedure MetaLoss(𝜙 , T)

2: 𝑐𝑜𝑠𝑡 = 0

3: for 𝑖 ∈ {1, . . . , 𝑏} do
4: 𝑗 = sample (T)

5: 𝑐𝑜𝑠𝑡 += Loss(Learn(𝜙 , T𝑗 , Loss), T𝑗))
6: end for
7: return 𝑐𝑜𝑠𝑡/𝑏
8: end procedure

By encouraging network parametrizations that enable few-step

convergence on unseen samples, meta-learning optimizes over opti-

mization itself. More specifically, in our scenario, the inner optimizer

learns to over-fit to the appearance of one exemplar. The outer op-

timizer then changes the inner optimizer’s start parameter values,

so that the next inner-loop execution will achieve improved results

and do so much quicker. Fig. 2 illustrates this idea with two very

basic tasks. As with other losses, the metaloss is computed across a

batch, i.e., 𝜙0 and 𝛼M are updated with information averaged across

multiple optimizations (the for loop in Line 3).

Fig. 3 illustrates the purpose of learning the step size. As explained

in Fig. 2, meta-learning will change the init from 𝐴 to a suitable

2
In a slight abuse of notation, as Learn takes four parameters, while it is called with

three here, where the first is a tuple holding the first two arguments, init and stepsize.

Metappearance: Meta-Learning for Visual Appearance Reproduction • 1:5

A B C D E F

α1
α2 α3

θ

Lo
ss

Fig. 3. Learning the step size: The orange and violet curve show the loss

(vertical) for different parameters 𝜃 (horizontal) for two BRDF tasks. The

gray 𝛼-intervals denote three alternative step sizes. The zig-zags are the

convergence paths for specific choices of step size. Please see the text for

discussion.

position 𝐸. When choosing the step size right, (𝛼2 for this init) the

optimizer will converge to the correct BRDFs, here 𝐶 and 𝐹 . With a

step size too small, 𝛼3, or a step size too large, 𝛼1, we converge to

less suitable results (𝐷 or 𝐵, respectively) for the violet task. As the

above considerations might be different in higher dimensions, we pa-

rameterize the step size as a vector instead of a scalar, which allows

anisotropic gradient steps [Li et al. 2017]. During meta-inference,

i.e., when using the meta-trained model to quickly infer a result for

a new, unseen sample provided by a user, the step-sizes are fixed,

and only the model weights are changed.

Jointly learning the model initialization and the corresponding

step sizes combines the quality of over-fitting with the ability to

build priors of general approaches. In practice, the inner training

loop takes several orders of magnitude fewer iterations than com-

mon over-fitting and is up to two orders of magnitudes faster than

fine-tuning, which enables execution at interactive rates: in most

applications, our inference time is less than 1 second.

Implementation. Our implementation follows the Model-agnostic

meta-learning (MAML) framework proposed by Finn et al. [2017].

As the name suggests, the meta-learner is agnostic to the inner

network used, which makes the approach flexible and well-suited

for our different application scenarios. We learn our per-parameter

stepsize (cf. Fig. 3) according to the approach presented inMeta-SGD

[Li et al. 2017]. For details of the different meta-learning algorithms

and tools used, please see Supplemental Sec. 1.

4 EVALUATION

We have introduced a framework for using meta-learning for visual

appearance reproduction, but how well does it compare to more

traditional training approaches? To answer this, we will now demon-

strate the effectiveness of Metappearance on a variety of different

applications. We will now introduce those, including notes on previ-

ous work and the architecture (Sec. 4.1), then outline the evaluation

protocols (Sec. 4.2), and, finally, report qualitative and quantitative

results (Sec. 4.3).

4.1 Applications

We consider six increasingly complex applications (Supplemen-

tal Tab. 2): i) RGB textures, ii) BRDFs, iii) stationary and iv) non-

stationary svBRDF maps from flash images, v) illumination maps

from RGB images with normals and finally vi) the entire light trans-

port in a scene.

Neither the tasks addressed nor architectures used are novel; the

contribution lies in the way they are trained. We re-iterate that it is

hence not our goal to compare different approaches (e.g., CNN vs.

MLP for BRDF encoding), but rather compare different methods of

training a specific approach. We will detail each application next.

4.1.1 Textures. In a Texture, RGB appearance varies over space,

but has uniform visual feature statistics [Portilla and Simoncelli

2000]. Gatys et al. [2015] optimized for a finite image in pixel space

such that its VGG activation statistics match the exemplar, a solution

that would be Overfit in our taxonomy. Later, Ulyanov et al. [2016]

trained a single CNN to perform this task feed-forward. Huang

and Belongie [2017] have shown how control over (instance) nor-

malization can produce new textures corresponding to a General
solution in the logic of this work. Henzler et al. [2020] show how to

do this conditioned on an input image, optionally involving a step

of Finetune. For a comprehensive survey, we refer the reader to

Raad et al. [2018].

These methods are exemplary for the spectrum we challenge:

either they take long to learn and fit the input exactly, or they are

fast and only approximate the input. We study a design based on

Ulyanov et al. [2016] and Henzler et al. [2020] as per Texture

in Supplemental Tab. 2. For the exact network and training setup,

please confer Supplemental Sec. 2.1.

4.1.2 BRDFs. While the RGB textures varied in space, but not in an-

gle, we now look into visual appearance varying with angle, but not

over space, the classic BRDF representation task. We use a network

the learn the BRDF responses for given light- and view-directions.

Our experiments follow Sztrajman et al. [2021] and Hu et al. [2020],

who both use networks combined with custom parametrizations to

encode the MERL [Matusik 2003] BRDF database. Details on related

work and the architectures used are found in Supplemental Sec. 2.2.

4.1.3 Stationary svBRDFs. The next-higher level of complexity are

stationary spatially varying BRDFs (svBRDFStat) that combine

spatial and angular variation of reflectance, as also surveyed by

Guarnera et al. [2016]. The theme recurs: optimization is slow but

matches the target well, while feed-forward networks are fast, but

often do not reproduce the target.

Specifically, we study estimating stationary svBRDFs from flash

images, pioneered by Aittala et al. [2016], denoted svBRDFStat in

Supplemental Tab. 2. We look at a design using a noise-conditioned

encoder-decoder, as demonstrated in Henzler et al. [2021]. We show

re-lit results, parameter maps and all network details and training

routines in Supplemental Sec. 2.3.

4.1.4 Non-stationary svBRDFs. Besides stationary svBRDFs, we

look into estimating non-stationary ones (svBRDFNonStat), also

from flash images. This task was explored by Deschaintre et al.

[2018] as well as Guo et al. [2020] and Gao et al. [2019] before. They

1:6 • Michael Fischer and Tobias Ritschel

all combine learning with fine-tuning in different ways. While De-

schaintre et al. [2020] use additional information and upsampling,

Gao et al. [2019] and Guo et al. [2020] optimize first in a latent space,

and later in the pixel space given only the target flash image.

We adapt the architecture from Deschaintre et al. [2018], an

encoder-decoder with a re-rendering loss, trained supervised under

𝐿1 on synthetic flash images, svBRDFNonStat from Supplemen-

tal Tab. 2. For testing, both the reference as well as the inferred

results are rendered from a set of novel view and light directions

and compared.

4.1.5 Illumination. While the previous applications have looked

into different forms of reflectance, another important application

for visual appearance is estimating Illumination. To study the rela-

tion to meta-learning, we consider the task of representing natural

spherical illumination itself as a Neural network (NN). In particu-

lar, we consider an encoder-decoder that takes as input a diffuse

shaded Low-dynamic range (LDR) image of a sphere and outputs

the High-dynamic range (HDR) environment map. Training data is

rendered using the Laval HDR environment map dataset [Gardner

et al. 2017] to illuminate spheres of random materials. For evalua-

tion, we render a second scene under the reference- as well as the

inferred illumination and compare both results. Details are found

in Supplemental Sec. 2.5.

4.1.6 Light transport. The ultimate explanation for visual appear-

ance is the light transport in a scene itself [Veach 1998]. To this

day, robust handling of all forms of light transport remains a chal-

lenge [Keller et al. 2020]. One important building block that recently

received a lot of attention is the guidance of paths [Herholz et al.
2016; Lafortune and Willems 1995; Müller et al. 2017, 2019; Vorba

et al. 2014; Zheng and Zwicker 2019; Zhu et al. 2021], where pre-

vious paths build a model (parametric or NN-based) that is then

used to steer path generation towards relevant paths that reduce

variance more effectively. As this strategy involves optimization,

it can also be meta-learned, so as to transfering understanding of

light transport across scenes.

To do so, we study the architecture of Zheng and Zwicker [2019],

which relies on a normalizing flow [Rezende and Mohamed 2015] to

learn a map from the unit hypercube to Primary Sample Space (PSS),

such that path density matches the one of the target scene. In other

words, the normalizing flow learns a scene-dependent PSS warp that

is then applied to random PSS samples. Once trained, the model can

be used to generate new paths as well as their probability. For details

on architecture and training, please see Supplemental Sec. 2.6.

While previously thesemethods were applied to a single scene, we

consider an entire set of scenes. To study this, we use a Cornell-box

like configuration that is populated by a random number of between

1 and 5 spheres of random diffuse, glass or metal materials in random

positions, a mirror that is randomly placed at a sidewall, and an area

light positioned randomly on the ceiling. To quantify success, we

measure the Negative Log-Likelihood (NLL) across the test-set, as is

done in [Zheng and Zwicker 2019], as using image-based metrics to

quantify training error would require rendering the entire test-set

per training epoch andmethod, which is computationally intractable.

If the model matches the scene-dependent radiance distribution well,

i.e., it correctly adapts to the light transport within the scene, the

resulting NLL will be low. We report image-space metrics with the

trained models for an equal number of rays in Tab. 3.

4.2 Methodology

Protocol. We compare our method against the approaches listed in

Sec. 3. The protocol is as follows: Let I denote the entire training

data set, e.g., all BRDF samples in the MERL database. For Overfit,
we sample a single input 𝐼 from I and train a network on 𝐼 , and

only 𝐼 , until convergence. General denotes a network that has

been trained on all elements in I and then is conditioned on the

particular 𝐼 we want inference for. Finetune applies a pre-defined

number of 𝑛 fine-tuning steps to the output of General to further

improve the result for a particular 𝐼 . Finally, our proposed Meta-
learning is trained on all tasks in I, but under the constraint of

being given only a fixed budget of 𝑛
l
gradient descent steps, with

𝑛
l
<< 𝑛. At inference time, a model conditioned on a particular 𝐼

can then quickly be instantiated by updating the initial meta-model

parameters 𝑛
l
times.

Timing. All experiments report inference time, i.e., the time

elapsed between first presenting an input to the network and re-

ceiving its final output. We refrain from reporting render- or path-

tracing times, as these do not change across methods. Please note

that for Meta, inference time is different from (meta-) training time:

meta-inference is quick, as we only need to perform a small number

of gradient steps and do not need to calculate costly higher-order

derivatives. We report this figure, as this is what a user would experi-

ence when presenting new, unseen inputs to one of our meta-trained

applications. During meta-training, however, the opposite is true:

we often need to backpropagate though the gradient operator it-

self, and do so for many examples. This leads to long meta-training

times: Meta trains roughly twice as long as General. For a more

detailed listing of training times, cf. Supplemental Tab. 1. Note that

for inference, the speed and memory consumption of the deployed

NN is unaffected by meta-learning.

Metrics. We evaluate each method on unseen input from the

test set, with the particular evaluation metric depending on the

application (column “Metric” in Supplemental Tab. 2). In particular,

meta-learning does not “cheat” by disclosing any test data during

training; the split is the same as in conventional training. This means

that Meta is presented with entirely new tasks (e.g., a completely

unseen BRDF) instead of just withheld samples from a previously

processed task (Supplemental Fig. 1 visualizes this).

4.3 Results

We summarize quantitative results in Tab. 2. We consistently show

lower compute time than Finetune and Overfit at only slightly

reduced quality. The speed-quality plots (Tab. 2, a) show that our

method is not just a compromise between the speed of General and
the quality of Overfit, but instead is located much closer to the

ideal range (top right corner) than all other methods. We will now

discuss each application’s results in turn.

4.3.1 Textures. Tab. 2, b shows distribution of error across the

texture task for all exemplars. We see that while both General and

Meta struggle more with some specific (not necessarily the same)

problem cases, the result is not dominated by outliers. The progress

Metappearance: Meta-Learning for Visual Appearance Reproduction • 1:7

Table 2. Quantitative results for all methods on all applications. The first row of plots shows the quality-speed continuum spanned by the four methods. The

ideal range (fast inference and high quality) is in the top right corner. The second row shows test-set error, individually sorted for each method. The third row

shows convergence plots at inference time. Note that very different time-scales are plotted on the same horizontal range, so comparison can only be made in

shape, not between fixed values at any point in time.

Texture BRDF svBRDFStat svBRDFNonStat Illumination Transport

Sp
ee

d

Quality0.4 1
.0001

1

Quality Quality Quality0.1 1 0.2 1 1

Sp
ee

d

.0001

1

Sp
ee

d

.001

1

Sp
ee

d

.0001

1

Sp
ee

d

.0001

1

Sp
ee

d

.01

1

Quality0.4 1 Quality0.4 1 0.8

Fast
good

Slow
good

Fast
bad

Slow
bad

Time ×1,×10,×100 Time ×1,×10,×100 Time ×1,×10,×100 Time ×1,×10,×100 Time ×1,×10,×100 Time ×1,×10,×100

Er
ro

r

Er
ro

r

Er
ro

r

Er
ro

r

Lo
g

er
ro

r

Er
ro

r

Index Index Index Index Index Index
0

2

Er
ro

r

0

0.04

Er
ro

r

0

2

Er
ro

r
0

0.25

Er
ro

r

.0005

.05

Lo
g

er
ro

r

-6

0

Er
ro

r

a)

b)

c)

0

1

0.5

2

0.2

2

0.1

1

0.1

10

-10

10

Error Time Error Time Error Time Error Time Error Time Error Time

General 0.522 0.022 1.892 0.005 0.436 0.201 0.540 0.040 6.536 0.002 -3.457 0.040

Overfit 0.183 212.421 0.631 141.201 0.229 516.515 0.099 182.292 0.168 133.583 -4.120 362.210

Finetune 0.201 21.210 0.654 9.972 0.256 103.675 0.141 57.221 0.313 26.812 -4.030 42.070

Meta 0.252 0.619 0.720 0.031 0.311 1.484 0.197 0.474 0.352 0.384 -3.970 0.486

of training is seen in Tab. 2, c, where Meta achieves a quality more

similar to Finetune than to General, but in a fraction of the time.

Fig. 4 shows qualitative results that further confirm these quan-

titative findings. General often projects the unseen textures into

the latent space only approximately, which results in subtle but

noticeable differences in features, color and scale. Finetune and

Overfit both almost perfectly replicate the original, as both meth-

ods conduct a complete optimization run on the current sample.

Our Meta-method faithfully replicates all textures with only minor

differences in style. For more results, please cf. the supplemental.

4.3.2 BRDFs. Our Meta-method achieves high fidelity reproduc-

tion results across all BRDFs in the MERL-database, as quantified

in Tab. 2. When rendered under Paul Debevec’s St. Peter’s Basilica

illumination, Meta achieves Structural Similarity (SSIM) values of

≥ 0.95 on 99% of all materials. For a visual comparison of the repro-

duction results of the different approaches, cf. Fig. 5: Our method

picks up fine nuances in the BRDF correctly, and we consistently

show large improvements over General. In some cases, Meta even

outperform methods Finetune and Overfit, which both have a

time budget several orders of magnitudes larger than our method.

4.3.3 Stationary svBRDFs. We detail quantitative results in Tab. 2

and show qualitative results in Fig. 6. This application again confirms

our previous findings: General is fast, but fails to match the input

accurately. This becomes evident in Fig. 6, where General broadly

matches the target, but is missing fine details and has slightly tinted

colors (top and bottom row) or washed-out highlights (middle rows).

Both Finetune and Overfit match the target well and pick up

subtle details such as the wood grain and shading cues correctly,

but take long to converge.

Our Meta-method achieves similar visual quality in a fraction of

their runtime and manages to produce correct svBRDF maps in just

over a second. We believe that a reason for this is the combination

of strong priors built during meta-training (cf. Fig. 11, left column)

and learning how to adapt them optimally. While the quality-speed

improvement is still significant, the gain from using Meta here is

comparatively small, as seen from the position of the red-dot in the

quality-speed continuum.

4.3.4 Non-stationary svBDRFs. Qualitative results for non-stationary
svBRDFs are shown in Fig. 7.We see that General is producing high-
lights not present in optimization-based training schemes, includ-

ing ours. Out of those optimization-based methods, ours is several

orders of magnitude faster, as seen in the numbers and the speed-

quality plot in Tab. 2, column “svBRDFNonStat”. Both Finetune
and Overfit perform well, although the visual comparison in Fig. 7

shows Finetune to perform slightly better. We presume that this

1:8 • Michael Fischer and Tobias Ritschel

General MetaFinetuneOverfit Reference

0.02s 0.62s21.21s212.42s

Fig. 4. Results across the test set for the Texture application. Every result

is conditioned on a random process, so not meant to be compared pixel-by-

pixel. We report inference time to the respective result.

General MetaFinetuneOverfit Reference

0.998 / 0.03s0.999 / 141s0.990 / 0.01s 0.999 / 13.3s

0.931 / 141s 0.967 / 0.03s0.922 / 0.01s 0.965 / 13.3s

Fig. 5. Rendered results for unseen BRDFs from the test-set, trained with

the different methods. The insets quantify SSIM and inference time.

is due to the fact that Finetune benefits from the priors developed

by General (recall, fine-tuning starts at the output of the general

model), whereas Overfit starts the training from scratch. In heavily

ill-posed tasks like svBRDF estimation, the importance of solid pri-

ors has been shown to be of great importance for the optimization

(cf. [Gao et al. 2019; Guo et al. 2020]). This is also part of the expla-

nation for Meta’s success on this task, as it can build priors over the

dataset in the outer loop and perform a quick overfit-optimization

in the inner loop without diverging too far.

4.3.5 Illumination. We present results for our Illumination task

in Fig. 8, where we render the inferred envmaps on a scene with

a specular and diffuse object. We compare all methods against a

reference image of that same scene rendered under the groundtruth

illumination. We note how General is able to place sharp shadows

(indicating it handles HDR well) but does not manage to exactly

match the intensity. Similarly, reflections look plausible, but do not

match the reference. Optimization-based methods meet this require-

ment, but only our meta-trained approach is orders of magnitude

faster and achieves comparable quality. This is confirmed by the

General Overfit ReferenceMetaFinetune

0.2s 516.5s 1.49s103.7s

Fig. 6. Results across the svBRDFStat test-set. Note that every result is a

realization of a random process, so not meant to be compared pixel-by-pixel.

For re-lit renderings and shading maps, cf. the supplemental.

General MetaFinetuneOverfit Reference

0.04s 0.47s57.22s192.29s

Fig. 7. Relighting results across the test-set for the svBRDFNonStat task.

We render the resulting parameter maps under a different view- and light

angle. For more results and the parameter maps, cf. the supplemental.

quality-speed plots in Tab. 2, where Meta is far-right, indicating that
quality is very close to the full optimization-based methods. Tab. 2,

c shows, that Meta converges even faster than for other tasks (the

red curve is more concave). From the distribution in Tab. 2, b we see

that the classic optimization-based methods have no problematic

outliers, a property retained by Meta.

4.3.6 Light transport. We show the outcome for Transport in

Fig. 9. Recall that Transport uses a resampling of a scene’s radiance

distribution to learn a model that is used for importance sampling

that particular scene. To compare the effectiveness of each approach,

we render a novel scene (unobserved during training for General
and during meta-training for Meta) using samples generated by

the respective importance-sampling model. We further include an

Metappearance: Meta-Learning for Visual Appearance Reproduction • 1:9

General MetaFinetuneOverfit Reference

4.61 / 0.002s 0.24 / 26.8s 0.71 / 0.384s0.19 / 133.6s

5.76 / 0.002s 0.29 / 26.8s 0.81 / 0.384s0.21 / 133.6s

Fig. 8. Results for an unseen instance from the Illumination test-set, inferred from a single RGB image (not shown) and used to render a novel scene (left).

Quality of illumination is most revealed in reflections (top) and cast shadow (bottom). The sharpness and shape of the shadows is very indicative of the high

dynamic range of the regressed envmap. We report MAE ×102 and inference time. For direct visualization of the envmaps, cf. the supplemental.

additional baseline, Regular, for this application. Regular uses

importance-sampling for the geometric term and randomly samples

outgoing paths from the hemisphere oriented around the normal. All

subfigures are rendered with the same number of samples (4096) and

very similar compute time, as querying the importance model can be

parallelized on the GPU and hence is fast compared to the tracing of

rays (milliseconds vs. minutes). As elaborated earlier (cf. Sec. 4.1.6),

we report the time betweenmodel instantiation and the final training

step (i.e., when it is ready to produce light path samples) as this is

the part that the choice of training scheme can influence, whereas

the subsequent path-tracing time is approximately invariant
3
to

the origin of the samples. For a comparison of ray-generation and

-tracing times, cf. Supplemental Tab. 4.

Quantitative results are seen in Tab. 2, column Transport: Meta
is again closest to the top-right corner, indicating that it can combine

the quality of Overfit and the speed of General. The qualitative
outcome (Fig. 9) indicates that all methods successfully reduce vari-

ance w.r.t. the Regular baseline. Again, General performs slightly

below the iterative optimization-based methods, and again, Meta is

orders of magnitude faster. To quantify how well the instantiated

models perform in image space, we rendered the entire test-set with

light paths produced by the respective importance model and a fixed

sampling budget of 1024 rays per pixel. We display common metrics

calculated on these renderings in Tab. 3. The results confirm the

qualitative inspection in Fig. 9 and show that Meta again is much

closer to Overfit and Finetune than to the general or regular base-

line. For details on the sampling and rendering operations, we again

refer to Supplemental Sec. 2.6.

Please note that we explicitly refrain from discussing which

method of importance sampling or path guiding is most appropriate

for practical applications and re-iterate that we compare ways of

training approaches instead of directly comparing the performance

3
We write approximately as the PSS samples created by all trained methods are created

in Python and must be passed to the C++ renderer, which incurs a time overhead that

the Regular baseline does not suffer. However, this is in the order of milliseconds, and

hence can be neglected.

Table 3. Mean absolute percentage error and Structural Dissimilarity

(DSSIM) across the Transport test-set. Lower is better for both metrics.

Regular General Overfit Finetune Meta

MAPE 0.516 0.471 0.405 0.409 0.422

DSSIM 0.546 0.479 0.418 0.425 0.430

of different approaches. We here introduce meta-learning to the

importance-sampling and rendering community as a first proof of

concept and show that a meta-importance-sampler can generalize

across a distribution of Cornell box-like scenes with practical bene-

fits. To our knowledge, this is the first application of meta-learning

in rendering, and the first presentation of meta-learned normalizing

flows.

5 ANALYSIS

As the previous section has shown, Meta achieves similar quality

than optimization-based approaches that take orders of magnitude

more training time. To analyze the inner workings of Metappear-

ance, we will next discuss a range of further properties that can be

deduced from our experiments: We will ablate our learned compo-

nents (Sec. 5.1), look at convergence of the inner and outer loop

(Sec. 5.2), explain how Metappearance can be interpreted as model

compression (Sec. 5.3.1) and finally discuss how Meta can make do

with much fewer input observations (Sec. 5.3.2).

5.1 Ablations

We meta-learn two hyper-parameters: step size and inititalization,

but which of them actually contributes to the success? Fig. 10 looks

into this question. In column a), we display the output of General.
In column b), we take this as starting point and use our learned step

size to perform 𝑛
l
= 20 “smart” gradient steps towards the reference.

Evidently, this leads to inferior results, as the general model has

been trained with a fixed, global learning rate, and hence does not

1:10 • Michael Fischer and Tobias Ritschel

General MetaFinetuneOverfit ReferenceRegular

6.466 4.849 / 0.04s 3.652 / 362.2s 3.302 / 42.1s 3.796 / 0.49s

5.410 3.465 / 0.04s 2.991 / 362.2s 2.398 / 42.1s 2.934 / 0.49s

Fig. 9. Results for an unseen test-scene for the Transport application. The left image is rendered with 240,000spp to guarantee a noise-free reference. The

images to the right are produced by rendering the reference scene with PSS samples produced by our different approaches (equal number of samples, i.e.,

equal rendering time). We report symmetric mean absolute percentage error (SMAPE) and the respective model inference time.

a) Over�td)c)b) Reference

Fig. 10. We compare the influence of a learned learning rate (column b) and

initialization (column c). Cf. the main text for details.

know how to account for a per-parameter learning rate. In column

c), we use our meta-learned initialization to perform 𝑛
l
= 20 steps

of conventional Adam optimization (learning rate multiplied by

10 for faster convergence) towards the reference. This again leads

to poor results, as our learned initialization normally is adapted

through large, non-uniform gradient steps. During meta-training,

the initialization was hence moved to a region of the objective

space that is approximately equally well-suited for all tasks, but not

necessarily easy to navigate with uniform gradient steps. Column

d) finally shows the output of our Meta-method, where learned

initialization and step size are used in combination. Evidently, this

outperforms all alternative configurations.

This decay in reproduction quality shows that meta-learning

really combines the best of both worlds: By optimizing for optimiza-

tion directly, the outer optimizer can discover gradient paths that

lead to local minima by not only moving the network weights (as

would General), but also the step-size with which these weights

are updated for a certain number of iterations (as in Finetune).
It is tempting to argument that optimizing over optimization

itself, e.g., learning the step size, automates time-consuming hyper-

parameter searches. While this is true to a certain extent, one still

must choose the meta-hyperparameters, e.g., outer loop learning

rate, etc. All our experiments use very similar hyper-parameters

(cf. Supplemental Sec. 1) that were not particularly tuned, but this

might be different in different applications or designs (cf. [Antoniou

et al. 2018]).

Meta-Init ReferenceFinal

0.10s 0.20s 0.31s 0.39s

0.13s 0.25s 0.38s 0.47s

0.12s 0.24s 0.36s 0.49s

0.37s 0.74s 1.11s 1.49s

0.009s 0.016s 0.025s 0.031s

0.19s 0.31s 0.49s 0.62s

Fig. 11. Convergence on unseen test-tasks from the meta-init (left) to dif-

ferent targets (right) for our different applications. We report wall-clock

inference time and results after approx. 25%, 50% and 75% (columns 2 - 5)

of the inner-loop steps. Note that the init itself is a plausible instance and

enables the optimization to “branch” to specific, very different goals. The

result for Transport is an equal-spp rendering with the inferred importance

model. Note how the noise clears with more meta-iterations although the

sample count stays the same.

Metappearance: Meta-Learning for Visual Appearance Reproduction • 1:11

5.2 Convergence

In Fig. 11, we show the convergence of our meta-learned initializa-

tion (leftmost column) towards different targets. All intermediate

outputs show realistic appearance, and even the meta-initialization

could pass as a problem instance (e.g., a texture) on its own. Through-

out optimization, our method does not introduce unwanted artifacts,

even for the ambiguous single-image svBRDF estimation task.

For maximal quality, we can fine-tune a converged Meta model

for an additional number of training steps. We explicitly refrained

from doing so in our main experiments, as this defies the purpose of

Metappearance (achieving high quality without fine-tuning). How-
ever, Meta will converge to a loss difference of less than 1 % relative

to Overfit in only 65 additional training steps (less than 5 sec-

onds on every application). Related, General will not improve from

further general training and has been trained to saturation already.

However, it is not our objective to claim superior quality for infi-

nite time and compute resources. Instead, let us consider what often

is the case in applications that involve user interaction: operating

under the constraint of a finite time budget. Imagine, for instance,

an architect wanting to quickly add a real-world svBRDF to his 3D

model; imagine an app instantaneously adding a customized deep

visual appearance model to a Tik-Tok video. The results of these

applications must not only be highly accurate, but also available

within split seconds to keep the user engaged, and no other method

comes close to ours in this quality-speed trade-off. We hence claim

highest quality under the constraint of limited time, and additionally

investigate an equal-time comparison between Finetune and Meta,
where both approaches are allowed to perform the same number of

gradient steps𝑛
l
that would normally be used duringmeta-inference.

This effectively is a very quick fine-tuning session, which is why we

refer to it as “QuickFinetune”, or QuickFT4
. QuickFT uses Adam,

for which we again increase the learning rate for faster convergence,

as we have done for almost all applications in our experiments (the

QuickFT config used here is the same as in Supplemental Tab. 1),

while Meta uses both its learned init and the learned stepsize.

As Tab. 4 shows, QuickFT already offers great gains over the

general method on some applications. However, it is outperformed

by Meta on all applications. For example-specific visualizations of

this experiment, including equal-time comparisons to Overfit, cf.
Supplemental Fig. 6. This confirms that meta-learning is more than

mere general inference followed by fine-tuning and that optimizing

over the optimization procedure itself (recall, we learn how to overfit

a sample efficiently) really finds a non-trivial optimizer.

5.3 Compression and Efficiency

5.3.1 Storage. Our Meta-method can further be interpreted as a

compression scheme. Consider a rendering or 3D-modeling appli-

cation, e.g., Blender, that loads a pre-trained model’s weights to

create new, diverse textures for surfaces. With methods Overfit
and Finetune, such an application would have to store an entire set

of weights per texture to be generated (note that, in such a scenario,

storing the fine-tuned decoder of method Finetune is sufficient),

4
To be able to fine-tune, we need to run General once. We do not deduct this runtime

from QuickFT’s time budget, as this makes the comparison stronger and also usually

is a rather fast operation.

Table 4. Average error across the respective application’s test-set for our

QuickFinetune-experiment. For the metrics reported, please cf. Supplemen-

tal Tab. 2. For convenience, we repeat results for methods General and Meta
from Tab. 2.

𝑛
l

General QuickFT Meta

Texture 15 0.522 0.285 0.252

BRDF 10 1.892 1.346 0.720

svBRDFStat 20 0.436 0.351 0.311

svBRDFNonStat 15 0.540 0.289 0.197

Illumination 15 6.536 5.240 0.352

Transport 8 -3.457 -3.551 -3.970

and then is restricted to synthesizing the pre-learned texture exem-

plars. One could alternatively store the heavy-weight general model,

but then would either have to forego accurate high-quality synthesis

or fine-tune the result, which is unsatisfying and time-consuming,

respectively. With our proposed Meta-method, it is sufficient to

store two sets of weights only (the model’s weights, and the per-

parameter learning rate) to achieve high-quality, diverse texture

synthesis in interactive runtime, i.e., in less than a second.

Similar arguments can be made for all the applications we have

presented in this work. Let 𝑤 denote the number of disk space

required to store the model’s weights in methods Overfit and

Finetune (we omit General from this comparison as we are con-

cerned with high-quality results only). The total amount of storage

required for the efficient and exact synthesis of 𝑚 textures then

equals𝑤𝑚, i.e., one set of weights per exemplar. Our Meta-method

achieves similar-quality results with constant storage requirement

2𝑤 (weights and per-parameter learning rate), and is not limited to

pre-trained or fine-tuned texture exemplars but instead can quickly

infer new, unseen exemplars with high fidelity. The compression

factor our method achieves hence is 2𝑚−1
, which, in the case of our

exemplar texture application with 500 exemplars, equals 1 : 250.

We would furthermore like to point out that compression also is

an inherent property of using neural networks on certain problem

instances. An NBRDF (a BRDF encoded in a network, cf. [Sztraj-

man et al. 2021]), for instance, has a significantly smaller memory

footprint than regular BRDFs (28 kB vs. 34.2MB in the case of our

Meta-NBRDF), so we additionally compress the original BRDF with

a factor of approx. 1 : 2000. However, we do not claim credit for

this as a property of our method, but rather of the base approaches

we meta-train. In fact, quite the contrary is true – our method re-

quires double the storage of a single network (model weights and

per-parameter learning rate). However, we believe Meta’s ability to

quickly converge to unseen tasks and the resulting, aforementioned

compression arguments to outweigh this moderate increase.

5.3.2 Sample Efficiency. For methods that consume single data

points, i.e., methods that use an MLP, there is a further compres-

sion argument that can be made. To do so, we would like to draw

attention to the way Meta is trained.
Recall that in meta-learning, the inner loop performs a fixed

(small) number of gradient descent steps towards the reference.

Naturally, as with most recent optimization algorithms, Meta uses

1:12 • Michael Fischer and Tobias Ritschel

stochastic gradient descent, i.e., the inner-loop gradients are not cal-

culated per-sample or across all samples, but rather over a randomly

selected subset of all available samples. Evidently, as Meta only

performs 𝑛
l
inner loop steps, only 𝑛

l
batches of size 𝑏 are sampled.

Naturally, this process repeats many times during meta-training

and hence eventually samples all data in a task (e.g., all samples

in a BRDF). However, this is not the case during meta-inference:

Recall that for meta-inference, we merely run 𝑛
l
gradient steps on a

new, unseen task. Evidently, this leads to Meta seeing only 𝑛
l
× 𝑏

samples of a task, while all its competitors have access to all the
samples in a task – in the cases of Overfit and Finetune, even
repeatedly. Nonetheless, Meta delivers quality that is very close to

its competitors that have seen all data.

This is no surprise: The ability to make do with scarce data is

a core property of meta-learning and has been amply explored

in previous works [Al-Shedivat et al. 2021; Finn et al. 2017]. In

Metappearance, this property could be useful in a number of ways:

Imagine, for instance, a client-server architecture, where the server

stores large amounts of data (e.g., a large set of scene-dependent

Transport radiance distributions), and the client stores the neural

representation that will be trained on samples of this data. In order

to train a model on a specific radiance distribution, the server would

have to transfer all of its samples to the client (let us ignore the

considerable time cost of training or fine-tuning a network on this

data for a second). However, following the above argument, we only

need to transfer 𝑛
l
×𝑏 samples to infer a converged instance of Meta,

for which the inference time can really be neglected.

In summary, this higher efficiency leads to bandwidth savings

of approx. 72.2% for the Transport application (a full dataset is

288,000 samples, Meta consumes only 8 × 10,000 = 80,000 samples).

For the case of BRDF encoding, the resulting reduction in needed

data transmission is even more drastic: Meta takes 𝑛
l
=10 inner loop

steps with a batchsize of 𝑏 = 512 and hence consumes 5,120 sam-

ples, whereas a full MERL BRDF, as is needed by all other methods,

consists of 180 × 90 × 90 ≈ 1.46 × 10
6
samples. Meta hence achieves

a bandwidth saving of 99.6%.

6 CONCLUSION

We have used meta-learning for efficient and accurate appearance-

reproduction on a variety of increasingly complex applications. Our

model, Metappearance, provides users with results that qualita-

tively compare well to other training schemes which take orders of

magnitude more training iterations or data. We have shown that

Metappearance generalizes not only across problem instances of a

similar nature, e.g., our variety of Cornell-box scenes, but can also

be applied across applications. In terms of implementation effort,

the additional code relative to a solution that already uses an ex-

isting optimization is small. In fact, as we have shown in Sec. 3.5,

re-phrasing the loss function is sufficient.

The main point of our experimentation is that while we cannot

yet have both perfect speed and perfect quality, we, in several cases,

improve substantially over a mere trade-off between the two, as

seen from the red dot in Tab. 2, a), which has moved much closer to

the ideal top-right spot, where visual appearance reproduction aims

to be. Directions for future research could include the application of

Metappearance to even more complex light-transport algorithms or

its extension to meta-learning the objective function or the sampling

pattern itself, which would enable even higher accuracy for visual

appearance reproduction.

ACKNOWLEDGMENTS

This work was supported by Meta Reality Labs, Grant Nr. 5034015.

We also acknowledge Gilles Rainer, Alejandro Sztrajman and Philipp

Henzler for proofreading.

REFERENCES

Jonas Adler and Ozan Öktem. 2018. Learned primal-dual reconstruction. IEEE transac-
tions on medical imaging 37, 6 (2018).

Miika Aittala, Timo Aila, and Jaakko Lehtinen. 2016. Reflectance modeling by neural

texture synthesis. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4 (2016).
Maruan Al-Shedivat, Liam Li, Eric Xing, and Ameet Talwalkar. 2021. On data efficiency

of meta-learning. In International Conference on Artificial Intelligence and Statistics.
PMLR, 1369–1377.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. 2018. How to train your

MAML. arXiv:1810.09502 (2018).
Steve Bako, Mark Meyer, Tony DeRose, and Pradeep Sen. 2019. Offline deep importance

sampling for Monte Carlo path tracing. In Comp. Graph. Forum (Proc. EGSR), Vol. 38.
AlexanderWilliam Bergman, Petr Kellnhofer, and GordonWetzstein. 2021. Fast training

of neural lumigraph representations using meta learning. In NeuriIPS.
Sai Bi, Stephen Lombardi, Shunsuke Saito, Tomas Simon, Shih-En Wei, Kevyn Mcphail,

Ravi Ramamoorthi, Yaser Sheikh, and Jason Saragih. 2021. Deep relightable appear-

ance models for animatable faces. ACM Trans. Graph. 40, 4 (2021).
Kristin J Dana and Jing Wang. 2004. Device for convenient measurement of spatially

varying bidirectional reflectance. JOSA A 21, 1 (2004).

Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien

Bousseau. 2018. Single-image svbrdf capture with a rendering-aware deep network.

ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4 (2018).
Valentin Deschaintre, George Drettakis, and Adrien Bousseau. 2020. Guided Fine-

Tuning for Large-Scale Material Transfer. In Comp. Graph. Forum, Vol. 39.

Julie Dorsey, Holly Rushmeier, and François Sillion. 2010. Digital modeling of material
appearance.

Alexei A Efros and Thomas K Leung. 1999. Texture synthesis by non-parametric

sampling. In ICCV.
Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning

for fast adaptation of deep networks. In ICML.
John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan

Overbeck, Noah Snavely, and Richard Tucker. 2019. Deepview: View synthesis with

learned gradient descent. In CVPR.
Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep inverse

rendering for high-resolution SVBRDF estimation from an arbitrary number of

images. ACM Trans. Graph. 38, 4 (2019).
Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano Gam-

baretto, Christian Gagné, and Jean-François Lalonde. 2017. Learning to predict

indoor illumination from a single image. arXiv preprint arXiv:1704.00090 (2017).
Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. A neural algorithm of

artistic style. arXiv:1508.06576 (2015).
Stamatios Georgoulis, Konstantinos Rematas, Tobias Ritschel, Efstratios Gavves, Mario

Fritz, Luc Van Gool, and Tinne Tuytelaars. 2017. Reflectance and natural illumination

from single-material specular objects using deep learning. IEEE PAMI 40, 8 (2017).
Darya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and

Mashhuda Glencross. 2016. BRDF representation and acquisition. 35, 2 (2016).

Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang Zhao. 2020. Ma-

terialGAN: reflectance capture using a generative svBRDF model. arXiv:2010.00114
(2020).

David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. arXiv:1609.09106 (2016).
Philipp Henzler, Valentin Deschaintre, Niloy J Mitra, and Tobias Ritschel. 2021. Gen-

erative Modelling of BRDF Textures from Flash Images. ACM Trans Graph (Proc
SIGGRAPH Asia) 40, 5 (2021).

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. 2020. Learning a neural 3d texture

space from 2d exemplars. In CVPR.
Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016.

Product importance sampling for light transport path guiding. 35, 4 (2016).

Bingyang Hu, Jie Guo, Yanjun Chen, Mengtian Li, and Yanwen Guo. 2020. DeepBRDF:

A Deep Representation for Manipulating Measured BRDF. 39, 2 (2020).

Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tieniu Tan, and Jian Sun. 2019.

Meta-SR: A magnification-arbitrary network for super-resolution. In CVPR.

Metappearance: Meta-Learning for Visual Appearance Reproduction • 1:13

Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time with adaptive

instance normalization. In ICCV.
Yuchi Huo, Rui Wang, Ruzahng Zheng, Hualin Xu, Hujun Bao, and Sung-Eui Yoon.

2020. Adaptive incident radiance field sampling and reconstruction using deep

reinforcement learning. ACM Trans. Graph. 39, 1 (2020), 1–17.
Bela Julesz. 1975. Experiments in the visual perception of texture. Scientific American

232, 4 (1975).

Kaizhang Kang, Zimin Chen, Jiaping Wang, Kun Zhou, and Hongzhi Wu. 2018. Efficient

reflectance capture using an autoencoder. ACM Trans. Graph. 37, 4 (2018).
Kaizhang Kang, Cihui Xie, Chengan He, Mingqi Yi, Minyi Gu, Zimin Chen, Kun Zhou,

and HongzhiWu. 2019. Learning efficient illumination multiplexing for joint capture

of reflectance and shape. ACM Trans. Graph. 38, 6 (2019), 165–1.
Alexander Keller, Pascal Grittmann, Jiří Vorba, Iliyan Georgiev, Martin Šik, Eugene

d’Eon, Pascal Gautron, Petr Vévoda, and Ivo Kondapaneni. 2020. Advances in Monte

Carlo Rendering: The Legacy of Jaroslav Křivánek. In SIGGRAPH Courses. Article 3.
Alexandr Kuznetsov, Milos Hasan, Zexiang Xu, Ling-Qi Yan, Bruce Walter,

Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019. Learning

generative models for rendering specular microgeometry. ACM Trans. Graph. 38, 6
(2019).

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoor-

thi. 2021. NeuMIP: multi-resolution neural materials. ACM Trans. Graph. (Proc.
SIGGRAPH) 40, 4 (2021).

Eric P Lafortune and Yves D Willems. 1995. A 5D tree to reduce the variance of Monte

Carlo ray tracing. In EGSR. 11–20.
Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-sgd: Learning to learn

quickly for few-shot learning. arXiv:1707.09835 (2017).
Wojciech Matusik. 2003. A data-driven reflectance model. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology.

Maxim Maximov, Laura Leal-Taixé, Mario Fritz, and Tobias Ritschel. 2019. Deep

appearance maps. In ICCV.
Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields

for view synthesis. In ECCV.
Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for efficient

light-transport simulation. In Comp. Graph. Forum, Vol. 36.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.

2019. Neural importance sampling. ACM Trans. Graph. (Proc, SIGGRAPH) 38, 5
(2019).

Addy Ngan, Frédo Durand, and Wojciech Matusik. 2005. Experimental Analysis of

BRDF Models. Rendering Techniques (2005).
Javier Portilla and Eero P Simoncelli. 2000. A parametric texture model based on joint

statistics of complex wavelet coefficients. Int J Computer Vision 40, 1 (2000).

Lara Raad, Axel Davy, Agnès Desolneux, and Jean-Michel Morel. 2018. A survey of

exemplar-based texture synthesis. Annals of Mathematical Sciences and Applications
3, 1 (2018).

Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. 2019. Neural BTF

compression and interpolation. In Comp. Graph. Forum, Vol. 38.

Sachin Ravi and Hugo Larochelle. 2016. Optimization as a model for few-shot learning.

(2016).

Danilo Rezende and Shakir Mohamed. 2015. Variational inference with normalizing

flows. In ICML.
Vincent Sitzmann, Eric R Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein.

2020. MetaSDF: Meta-learning signed distance functions. arXiv:2006.09662 (2020).
Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. 2019. Scene repre-

sentation networks: Continuous 3d-structure-aware neural scene representations.

arXiv:1906.01618 (2019).
Alejandro Sztrajman, Gilles Rainer, Tobias Ritschel, and Tim Weyrich. 2021. Neural

BRDF Representation and Importance Sampling. In Comp. Graph. Forum, Vol. 40.

Shufeng Tan and Michael L Mayrovouniotis. 1995. Reducing data dimensionality

through optimizing neural network inputs. AIChE Journal 41, 6 (1995).
Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P Srinivasan,

Jonathan T Barron, and Ren Ng. 2021. Learned initializations for optimizing

coordinate-based neural representations. In CVPR.
Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi, Kalyan

Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,

et al. 2020. State of the art on neural rendering. In Comp. Graph. Forum, Vol. 39.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky. 2016. Texture

networks: Feed-forward synthesis of textures and stylized images.. In ICML.
Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Stanford

University.

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.

On-line learning of parametric mixture models for light transport simulation. ACM
Trans. Graph. 33, 4 (2014).

Shaofei Wang, Marko Mihajlovic, Qianli Ma, Andreas Geiger, and Siyu Tang. 2021.

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images.

arXiv:2106.11944 (2021).

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Free-

man, and Jonathan T Barron. 2021. NeRFactor: Neural Factorization of Shape and

Reflectance Under an Unknown Illumination. arXiv:2106.01970 (2021).
Quan Zheng and Matthias Zwicker. 2019. Learning to importance sample in primary

sample space. 38, 2 (2019).

Shilin Zhu, Zexiang Xu, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2020.

Deep kernel density estimation for photon mapping. In Comp. Graph. Forum. (proc.
EGSR), Vol. 39.

Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov,MarkMeyer, HenrikWann

Jensen, Hao Su, and Ravi Ramamoorthi. 2021. Photon-Driven Neural Reconstruction

for Path Guiding. ACM Trans. Graph. 41, 1 (2021).

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Visual Appearance
	2.2 Learning

	3 Our Approach
	3.1 Problem statement
	3.2 General
	3.3 Over-fitting
	3.4 Fine-tuning
	3.5 Meta-learning

	4 Evaluation
	4.1 Applications
	4.2 Methodology
	4.3 Results

	5 Analysis
	5.1 Ablations
	5.2 Convergence
	5.3 Compression and Efficiency

	6 Conclusion
	Acknowledgments
	References

