
Efficient and Accurate Optimization
in Inverse Rendering and Computer

Graphics

Michael Fischer

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

February 6, 2025

2

I, Michael Fischer, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the work.

Michael Fischer

Abstract

Efficient and accurate representation of graphic assets, a long-standing task in the

graphics community, has achieved new heights with the advent of learning-based

methods by representing visual appearance as neural networks. Surprisingly, such

visual appearance networks are often trained from scratch – an expensive operation

that ignores potentially helpful information from previous training runs. This thesis

therefore introduces Metappearance, an algorithm which optimizes over optimization

itself and enables orders of magnitude faster training times at indistinguishable visual

quality while retaining the network’s adaptability to new, unseen data.

Moreover, even a fully converged network, albeit a smooth function, does not

guarantee optimization success when employed in an inverse rendering scenario. In

fact, it is common for inverse rendering to exhibit plateaus – regions of zero gradient

– in the cost function, which hinder gradient-based optimization from converging.

Chapter 4 therefore introduces an algorithm that smooths out such plateaus by

convolving the rendering equation with a Gaussian blur kernel and thus successfully

optimizes scenarios where other, rigid methods fail to converge.

Finally, while recent research has shown that specialized treatment of the

renderer’s internals can yield correct, usable gradients, there is no unified, systematic

way of differentiating through arbitrary, black-box graphics pipelines. We therefore

introduce the concept of neural surrogates, which allow differentiating through

arbitrary forward models without requiring access to, or making any assumptions

on, the rendering pipeline’s internals. We show that our neural surrogate losses can

successfully optimize various graphics tasks and scale well to high dimensions, a

domain where traditional derivative-free optimizers often do not converge.

Acknowledgements

This thesis is the culmination of my PhD work at University College London,

carried out from November 2020 to December 2024. I am deeply indebted to

several individuals and their continuous and unwavering support throughout this

time. Without you, the following thesis would not have been possible.

First and foremost, the people that require no introduction – but shall receive

one regardless – are Tobias Ritschel and Niloy Mitra, my supervisors. It is my

firm belief that a young PhD student could wish for no better supervisors, and their

guidance and invested time is unparalleled. Especially from you, Tobias, I’ve learned

a lot about research methodology and the corresponding ideation process, and hope

to continue to do so in the future. This thesis is in no small part the result of our

countless discussions, getting-to-the-bottom-of-things talks, coding- and debugging

sessions and figure iterations — thanks a lot!

A big thank you goes out to my London colleagues, who helped create a positive

and creative atmosphere in the lab: Nels and Ziwen, who were always in the office

and who I’ve shared countless lunches with; Luca and Sanjeev, my cohort-peers,

who were progressing along the same trajectory and who I’ve spent several deadlines

with; Philipp, David and Preddy, who left shortly after I joined but whose friendship

and advice has been invaluable along the way; and finally Niladri, Romy and Chen,

the younger generation, whose eagerness inspires me to keep pushing myself towards

new topics and being a better researcher.

Additionally, I am deeply grateful for the continuous support of Meta Reality

Labs, who have sponsored the cost of my tuition and stipend (grant number 5034015)

and taken me on as an intern during the summer of 2023 in Redmond, Washington.

Acknowledgements 5

Specifically, Carl Marshall for being a great mentor and project manager, Zhao Dong

for great discussions and Zhengqin Li for his hands-on help.

Further, I would like to express my gratitude towards the Ezra family and the

Rabin Ezra scholarship trust, who have decided to support my research and career

with a bursary award in early 2024.

A special mention should also go out to my co-authors at Adobe Research;

Thibault Groueix, Vova Kim, Iliyan Georgiev and Valentin Deschaintre, who have

supported me during my internship in the summer of 2024 and provided valuable

project guidance and insights while simultaneously being great friends altogether.

When speaking of great friends, the following people must not remain unmen-

tioned: Barbora, Georg, Timo, David, Johannes, Martin, Jan and Sanjeev - thanks

for all the fun activities, dinner parties and good times all over the world.

Finally, I would like to thank my parents and brothers for their support through-

out this time, and for putting up with my deadlines and stress during Christmas

breaks, constant travel, not being home much, and always talking about lofty things

that no one (including me) really understands.

My final and biggest gratitude goes to Jenni, who has been extremely supportive

and understanding through all the ups and downs of this journey. Be it from the early

days of my first PhD year, when we shared a room and both worked from home due

to Covid-19 restrictions, or later in London, when countless evenings and weekends

were spent in the lab before deadlines.

I couldn’t have done it without any of you, so please take a moment to pat

yourself on the back and be sure to have my heartfelt gratitude. Now, enough with

the sentiment, let’s get into the research parts!

Impact Statement

This thesis presents three novel approaches for efficient network training and differ-

entiable, inverse graphics. The contributions presented in this work were published1

at SIGGRAPH ASIA 2022, CVPR 2023 and SIGGRAPH 2024, respectively, which

reside among the premier venues for scholarly work in the fields of computer graph-

ics and computer vision. All publications in this thesis have been peer-reviewed by

three (CVPR) to five (ACM ToG) independent reviewers in a double-blind review

process. To facilitate further academic work, we have publicly released code, data

and trained models (where applicable) for the presented approaches.

Michael Fischer and Tobias Ritschel: “Metappearance: Meta-learning for visual

appearance reproduction.” ACM Transactions on Graphics (TOG) 41.6 (2022): 1-13,

[64].

Michael Fischer and Tobias Ritschel: “Plateau-reduced differentiable path trac-

ing.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (2023), [66].

Michael Fischer and Tobias Ritschel: “ZeroGrads: Learning Local Surrogates for

Non-Differentiable Graphics.” ACM Transactions on Graphics (TOG) 43.4 (2024):

1-15, [67].

1Some of the figures and tables have been adapted for format to better fit the layout of this thesis.
The content was not altered.

Although this thesis primarily focuses on the algorithms behind optimization in

inverse rendering, my broader research at UCL has also included work on learned 3D

appearance transfer and 3D material selection, where optimization-based approaches

play a crucial role, resulting in the following publications:

Michael Fischer, Zhengqin Li, Thu Nguyen-Phuoc, Aljaž Božič, Zhao Dong, Tobias

Ritschel, Carl Marshall: “NeRF Analogies: Example-Based Visual Attribute Transfer

for NeRFs.” Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (2024), [70].

Michael Fischer, Iliyan Georgiev, Thibault Groueix, Vladimir G. Kim, Tobias

Ritschel, Valentin Deschaintre: “SAMa: Material-aware 3D Selection and Segmen-

tation.” arXiv preprint 2024, currently under submission, [69].

Contents

1 Introduction 12

1.1 Contributions . 15

1.1.1 Metappearance . 15

1.1.2 Plateau-Reduced Differentiable Path Tracing 16

1.1.3 ZeroGrads: Learned Local Neural Surrogates 17

2 Background 19

2.1 A Primer on Computer Graphics 19

2.1.1 Image Formation . 19

2.1.2 Visual Appearance . 21

2.1.3 The Rendering Equation 25

2.1.4 Inverse Rendering . 29

2.2 Learning and Optimization . 31

2.2.1 Gradient-based Learning 31

2.2.2 Meta-Learning and Learning to Learn 35

2.3 Differentiable Rendering . 38

2.3.1 Problems with Rendering Gradients 38

2.3.2 Differentiable Rasterization 40

2.3.3 Differentiable Path Tracing 43

2.3.4 Variational and Gradient-Free Optimization 47

3 Metappearance: Meta-Learning for Visual Appearance Reproduction 51

3.1 Introduction . 52

Contents 9

3.2 Previous Work . 54

3.2.1 Visual Appearance . 54

3.2.2 Learning . 54

3.3 Our Approach . 57

3.3.1 Problem statement . 57

3.3.2 General . 58

3.3.3 Over-fitting . 58

3.3.4 Fine-tuning . 59

3.3.5 Meta-learning . 60

3.4 Evaluation . 63

3.4.1 Applications . 63

3.4.2 Methodology . 66

3.4.3 Results . 67

3.5 Analysis . 74

3.5.1 Ablations . 75

3.5.2 Convergence . 76

3.5.3 Compression and Efficiency 78

3.6 Conclusion . 81

4 Plateau-reduced Differentiable Path Tracing 82

4.1 Introduction . 82

4.2 Background . 84

4.2.1 Rendering equation . 84

4.2.2 Path tracing . 85

4.2.3 Rasterization . 86

4.2.4 Other renderers . 87

4.3 Plateau-free Gradients . 87

4.3.1 The Plateau-free Rendering Equation 88

4.3.2 Variance Reduction . 90

4.3.3 Adaptive bandwidth . 92

4.3.4 Implementation . 92

Contents 10

4.4 Experiments . 92

4.4.1 Methodology . 93

4.4.2 Results . 94

4.4.3 Timing . 98

4.4.4 Ablation . 99

4.5 Discussion . 99

4.6 Conclusion . 101

5 ZeroGrads: Learning Local Surrogate Losses for Non-Differentiable

Graphics 102

5.1 Introduction . 103

5.2 Previous Work . 106

5.3 Our approach . 109

5.3.1 Smooth objective . 110

5.3.2 Surrogate . 112

5.3.3 Localized surrogate loss 112

5.3.4 Estimator . 113

5.3.5 Sampling . 115

5.3.6 Summary . 116

5.4 Evaluation . 116

5.4.1 Methods . 117

5.4.2 Protocol . 117

5.4.3 Tasks . 118

5.4.4 Results . 120

5.4.5 Higher Dimensions . 122

5.4.6 Gradient Variance Analysis 126

5.4.7 Comparison to specific solutions 127

5.4.8 Limitations and Failure Cases 128

5.5 Conclusion . 130

Contents 11

6 Discussion and Outlook 132

6.1 Limitations of the discussed methods 132

6.2 Limitations of current inverse rendering setups 135

6.3 New directions for inverse rendering 137

7 Conclusions 140

Appendices 143

A Appendix A: Metappearance 143

A.1 Meta-Learning . 143

A.2 Networks and Implementation Details 144

A.2.1 Textures . 145

A.2.2 BRDFs . 146

A.2.3 Stationary svBRDFs . 148

A.2.4 Non-Stationary svBRDFs 151

A.2.5 Illumination . 152

A.2.6 Transport . 154

B Appendix: Plateau-reduced Differentiable Path Tracing 158

B.1 Hyperparameters . 158

B.2 Parameter Analysis . 159

B.3 Compatibility . 161

B.4 Additional Derivations . 162

C Appendix: ZeroGrads - Learning Local Surrogate Losses For Non-

Differentiable Graphics 165

C.1 Implementation Details . 165

C.1.1 Hyperparameters . 166

C.2 Tasks . 167

C.2.1 Rendering settings and task descriptions 168

Bibliography 172

Chapter 1

Introduction

Since the beginning of mankind, light has been humanity’s guide, illuminating the

world’s intricate beauty with astonishing detail and near-infinite speed. However,

what seems effortless for our eyes in reality is a complex interplay of physics, biology,

and learning. In computer graphics, we strive to replicate this interplay – capturing

the way light bounces, scatters and propagates though a scene before finally being

received by an observer – through algorithms that reconstruct reality at the highest

fidelity. Yet, even though these algorithms continually grow more powerful, they

remain blind to their own inefficiencies: ignoring the lessons of past optimizations,

stalling on plateaus in optimization landscapes, and failing to handle the opaque

inner workings of modern rendering pipelines.

Much like light itself, this thesis takes a journey – exploring pathways to

illuminate these challenges and bend the rules of conventional optimization with

three novel algorithms. We introduce Metappearance, a method that learns how

to learn, allowing networks to adapt rapidly to new tasks by distilling knowledge

from previous optimizations. We smooth optimization landscapes through Gaussian

convolutions, traversing plateaus that halt traditional methods. And we replace

blind trial-and-error with intelligent neural surrogates, empowering optimization

of complex modern black-box graphics pipelines. Just as light transforms our

perception of the world, these methods transform the process of optimizing visual

representations, pushing optimization in computer graphics closer to the elegance

and efficiency of human perception.

13

To ground these ideas, we turn to the technical underpinnings of photorealism

in computer graphics. Achieving such realism traditionally relies on algorithms that

approximate the rendering equation [140], a high-dimensional integral that describes

how incoming light, or radiance, scatters through a scene and therefore ultimately

shapes how that scene is perceived by an observer.

Yet, while the accurate modeling of light transport is a necessary condition

for achieving photorealism in rendering, it is not a sufficient one – we further need

high-fidelity graphics assets, such as materials and textures, scattering functions

that describe reflection and refraction within the scene, and accurate illumination

models to achieve real-world appearance reproduction. For an efficient usage, these

assets must strike the balance between the highest possible fidelity and practical

applicability in their respective use-cases. A good counter-example are scanned

bi-directional reflectance distribution functions (BRDFs): while they permit highest-

quality reflectance reproduction, their storage requires several gigabytes, making

their use in real-world applications impractical [317]. With the recent advances in

deep learning and neural rendering, assets are commonly encoded into deep neural

networks, leading to deep graphics assets [193; 249; 293; 108]. Their benefits

include compression and reduced storage [293; 250] at equal or higher quality

[293; 249], smoothness for easy interpolation, and amenability to parallelization and

real-time inference [203; 201]. Moreover, visual appearance networks can entirely

be fit from data – an important distinction from previous work, which hand-designed

sophisticated models and algorithms to closely replicate real-world appearance.

Using neural networks allows designers and practitioners to loosely define a space

of algorithms (via the network architecture), in which the most suitable algorithm is

then selected via optimization, by fitting the network to the given real-world visual

appearance data. It should be mentioned that the above benefits come at the cost of

editability, as networks are much harder to interpret than hand-designed models.

Surprisingly, the research community trains most deep graphics assets “in

isolation”, i.e., without re-using experience from previous or parallel optimization

iterations. Moreover, models are usually initialized from scratch [103] and hence

14

forego a potential inductive bias that the optimization could benefit from [63; 214;

296], as each newly initialized network will have to traverse regions in parameter

space (e.g., close to the initialization) which likely have little in common with the

optimal parameters, resulting in prolonged training times.

An alternative, more traditional way of parametrizing assets in graphics are

scene parameters, such as the position or intensity of a light source, the diffuse

albedo of a wall, or the roughness of a surface. The raison d’être of these parameters

is to adjust the scene configuration or the employed (shading) models to achieve the

desired level of photorealism, often based on reference observations from the real

world. Their optimal configuration, however, is seldomly known, and it can take

skilled artists hours of work to reproduce the appearance of even a single object or

observation with high fidelity.

The field of inverse rendering therefore aims to automatically regress these

scene parameters from data in the form of images or other measurements, leading to

the fundamental question of how to do so efficiently and reliably. A straightforward

way could employ a trial-and-error approach, where we simply try all parameter

configurations and thus will eventually find the correct one. While this might

work for simple problems, it quickly becomes intractable for even modest problem

dimensionality. As an alternative, we could use gradient-based optimization, where,

starting from an initial guess, we minimize an error measure between the real-world

observations and the current parameters’ renderings. However, this is difficult, as

both common forms of rendering (rasterization and path tracing) are not easily

differentiable due to step functions and discontinuities in the forward model [183;

179; 237; 38]. Even if we manage to make the rendering process differentiable, there

still is no guarantee that our gradient-based optimization will actually converge to a

useful parameter value – in other words, the mere existence of gradients does not

guarantee a successful optimization outcome [192].

One of the underlying reasons is the existence of plateaus – constant regions of

zero gradient – in the optimization landscape, which commonly arise under standard

image metrics and impede gradient flow during the optimization. Moreover, making a

1.1. Contributions 15

renderer differentiable requires sophisticated and specialized treatment of edge cases

[169; 183] that often result in entirely re-writing the rendering engine [219; 131; 133;

12] – a time-consuming manual process that cannot be scaled to all graphics engines

we might wish to differentiate through, and which is additionally bound by project

requirements such as dedicated programming languages or hardware constraints.

This thesis therefore asks the following question: How can we achieve fast

network training, while at the same time being able to use the resulting network in

an inverse rendering scenario with a smooth cost landscape and under an arbitrary

graphics pipeline?

1.1 Contributions
To make progress towards answering this question, this thesis presents three works

that address each of the aforementioned subproblems individually. After giving an

overview over relevant concepts and terms in Chapter 2, the first contribution of this

thesis is Metappearance, presented in Chapter 3, which focuses on the rapid and

efficient training of deep graphic assets that encode visual appearance. Subsequently,

Chapter 4 addresses the problem of plateaus in the cost-landscape of optimization

tasks and presents a novel, convolved version of the rendering equation that enables

convergence on plateau-laden optimization scenarios. Lastly, Chapter 5 presents

ZeroGrads, a novel algorithm for making arbitrary graphics pipelines differentiable

by approximating the local cost landscape via an easily differentiable neural network.

1.1.1 Metappearance

In Chapter 3, we introduce Metappearance, a meta-learning approach to visual

appearance [55] reproduction. The motivation for Metappearance originates in the

fact that deep graphic assets are traditionally trained using on of three paradigms:

For overfit networks, a NN is overfitted onto a single problem instance (e.g., a single

BRDF), which leads to very high reproduction quality, but suffers from long training

times and does not generalize to other problem instances [193; 293; 200; 335; 79].

Contrary, general networks are trained to replicate all problem instances of a dataset

in a feed-forward manner and exhibit fast inference times even for unseen inputs, but

1.1. Contributions 16

A B C D E F

α1
α2 α3

θ

Lo
ss

Figure 1.1: A schematic overview of how meta-learning facilitates a traversal of the cost
landscape: by moving the NN’s initialization from A to E, the general time-to-
goal distance to the valid goals C and F is shortened. Moreover, by adjusting
the stepsize to α2, the algorithm ensures to not converge to degenerate solutions
B or D but can reach both correct solutions equally well.

lack in quality, as the entire dataset must be compressed into the networks current

set of weights [50; 119; 107]. Finally, the fine-tune approach creates a preliminary

result by executing a general network and then launches a second, non-differentiable

overfitting procedure to improve the individual prediction quality. This is not end-

to-end differentiable and thus leads to unnecessary features being encoded in the

general stage, while still not being possible at interactive runtimes [108; 52].

Metappearance combines the advantages of these different approaches by using

meta-learning [63; 172] to make the fine-tuning stage differentiable. In essence,

Metappearance optimizes over gradient descent itself, so as to adjust the model’s

initialization and the subsequent learning’s stepsize. Adjusting the initialization leads

to an inductive bias that allows the model to generalize to new, unseen instances,

while adjusting the stepsize enables inference at interactive runtimes (less than one

second), at indistinguishable visual quality. Due to the nature of the algorithm, a

further benefit of our approach is that the resulting meta-trained networks are much

more data-efficient than their traditionally-trained counterparts.

1.1.2 Plateau-Reduced Differentiable Path Tracing

The second work presented in this thesis (Chapter 4) tackles the problem of plateaus

in inverse rendering. A plateau is a flat region in the cost landscape that prevents tradi-

1.1. Contributions 17

Mug Rotation

Im
ag

e
M

SE

Figure 1.2: An exemplary visualization of an inverse rendering problem with a plateau, and
our solution. In a rigid optimization, rotating the cup around its z-axis introduces
a plateau in the cost landscape (the blue curve) as soon as the handle is occluded
by the cup. In our formulation (middle image), the smoothed cup’s handle
always is (slightly) visible and hence continuously influences the objective,
leading to the much smoother orange curve.

tional gradient-based optimization from converging, as the gradient on the plateau is

zero, leading the optimization to stall. In this work, we take inspiration from research

on differentiable rasterization [179; 237; 38; 259], which has shown that replacing

discontinuities by smooth approximations (such as the Sigmoid function) allows

gradient flow and hence enables end-to-end differentiation of the rasterization pro-

cess. Unfortunately, rasterization is limited in the amount of fidelity it can represent

[237], as it only solves a simplified, single-bounce version of the rendering equation

and (without significant extension) hence is unable to produce sophisticated light

transport phenomena like subsurface-scattering, global illumination or caustics. In

this work, we therefore extend the idea of ”differentiation via blurring” to the domain

of path tracing and propose a novel algorithm that convolves the high-dimensional

rendering equation with a Gaussian smoothing kernel, leading to a smoother cost

landscape. We develop a scheme to efficiently importance-sample this novel equation

and show our algorithm’s superior convergence on various inverse rendering applica-

tions. Our work can be applied as a straight-forward extension to both black-box and

differentiable renderers and works on problems with sophisticated light transport,

such as refractions, caustics and global illumination.

1.1.3 ZeroGrads: Learned Local Neural Surrogates

The third work presented in this thesis builds upon the previous chapter and extends

the applicability of plateau-free inverse rendering to arbitrary graphics pipelines. To

1.1. Contributions 18

Figure 1.3: While regular forward modelsRmight not be able to provide gradients w.r.t. the
scene parameters θ (red arrow, top), our approach, ZeroGrads, enables this via a
learned, differentiable surrogate function h (green, bottom) that maps parameters
θ to their associated loss values and can be differentiated analytically.

this end, we introduce ZeroGrads, a novel algorithm that allows differentiating trough

arbitrary graphics pipelines (Chapter 5). While we have previously established that a

traditional renderer can be modified to produce usable gradients (a more thorough

review will be given in Chapter 2), this is a highly non-trivial, manual task which

requires significant implementation time, expertise and the use of a domain-specific,

dedicated programming language [12; 324; 131]. In ZeroGrads, we instead observe

that while we might not be able to calculate the renderer’s gradients, sampling its

loss values is trivial when provided with a reference, even under arbitrary graphics

pipelines. The key idea of ZeroGrads therefore is that we can fit a differentiable

surrogate function to these loss samples and then differentiate the surrogate to

obtain a gradient estimate. As querying the loss function might be expensive and

in large parts irrelevant for the current gradient step, we propose a local surrogate

that is trained self-supervised alongside the parameter we optimize via an efficient

sampling scheme. We show that our neural surrogate can be used to successfully

differentiate through various non-differentiable graphics problems, such as visibility

in rendering or combinatorical problems and discrete parameter spaces in procedural

modeling, and show that ZeroGrads scales well to higher dimensions, where other

derivative-free optimizers struggle to converge.

With the contributions now outlined, the following chapter will provide an

overview over the relevant concepts and terms used throughout this thesis, before

Chapters 3, 4 and 5 will then present the aforementioned individual contributions,

respectively.

Chapter 2

Background

2.1 A Primer on Computer Graphics
Computer graphics concerns itself with the art of transforming raw data (e.g., image

textures and triangle meshes) into images that humans can observe, understand and

admire. Over the past decades, the field of graphics has evolved drastically, from

first principles such as Bézier curves [88] and ray casting [265] to inverse renderers

[169; 133; 237], new geometry representations [226; 147] and data-driven, neural

image generators [105; 263; 332]. It is impossible to cover all these aspects in detail

in the limited framework of this thesis, so the following section will give a broader

overview over the general concepts and then focus on explaining the relevant terms

and algorithms for the subsequent chapters in greater detail.

2.1.1 Image Formation

To understand the presented contributions to differentiable rendering in Chapter 4

and Chapter 5, we will first review the forward model of the rendering process.

Rendering usually starts from an image formation model (e.g., a pinhole or fisheye

camera) and a scene description containing several geometry primitives (spheres,

boxes, cylinders, triangles forming meshes, ...) and light sources. From these, an

image can be rendered with numerous techniques, the most prominent two being ray

(path) tracing and rasterization.

Ray Tracing uses the camera’s extrinsic (position and orientation) and intrinsic

(focal length, optical center and skew) parameters to formulate the equation of a ray

2.1. A Primer on Computer Graphics 20

through each pixel of the camera’s image plane. For a pinhole camera model, this is

usually expressed as r(t) = o+ td, where o and d are the ray’s origin and direction,

respectively.

The purpose of this ray is to determine the color of the pixel that is currently

being processed. Since we know the ray’s equation and the scene primitive’s position,

we can test the ray against intersections with all primitives, yielding the ray’s hitpoint

in the scene. Once the ray intersect a primitive, the resulting hitpoint provides access

to the primitive’s material properties, which will be used for shading computations.

Additionally, a second second ray is cast towards the light sources in the scene,

determining whether the current hitpoint has a direct line of sight to a light source

(i.e., is illuminated), or whether it is occluded and thus in shadow. Depending on

the ray tracer’s configuration, several other surface interactions might occur, such as

(inter-) reflection, refraction, or scattering events.

Rasterization, the other prevalent rendering technique, projects the 3D positions of

scene vertices onto the camera’s 2D image plane via the camera’s model, view, and

projection matrices, which results in 2D triangles in screen space. All triangles are

clipped against the view frustum, i.e., the visible portion of the screen, and triangles

covering multiple pixels are rasterized by interpolating vertex attributes (e.g., normals

or texture coordinates) across the triangle’s surface using barycentric interpolation.

Per-pixel lighting calculations, such as Phong shading [26], then determine the final

color. Since there is no equivalent to the direct visibility query from ray tracing,

occlusion between overlapping triangles must be resolved in a post-projection step

via comparing the depth along the camera’s viewing axis (z-test).

Both rasterization and ray tracing have distinct advantages and downsides. Since

rasterization relies on projection, which in turn is realized via matrix multiplication,

it lends itself well to parallelization on modern graphics processing units (GPUs)

and thus can rasterize millions of triangles in a matter of milliseconds. However,

due to the projective nature of the rasterization process, it is limited to local lighting

and its extension to non-local phenomena requires advanced techniques like shadow-

mapping [288; 29; 180; 261] or screen-space reflections [191; 110]. Ray tracing, on

2.1. A Primer on Computer Graphics 21

the other hand, must test each ray against all primitives in a scene1, which leads

to longer per-pixel processing times, but is easily extendable to model non-local

interactions (see Sec. 2.1.3). Modern rendering pipelines thus combine the best of

both approaches by leveraging rasterization for the base image generation, while

using ray tracing for selective visual effects like reflections.

2.1.2 Visual Appearance

Regardless of the employed rendering algorithm, the fidelity of the final image is

primarily dictated by the scene’s material properties, which describe the interaction

of light with the intersected surfaces. Notably, realistic visual appearance [55] is

achieved through creating plausible and pleasing visual patterns or materials across

all positions and incident light- and view-angles in the scene. Since the reproduction

of visual appearance is the motivation of Chapter 3 of this thesis, the following

section will detail the relevant appearance modalities.

Textures. In the simplest case, we can ignore angular dependence and describe

visual appearance as texture [138; 60; 82]. Textures are usually defined on a 2D

image grid and then mapped onto a surface by interpolating the vertices’ texture

coordinates. They can be realized in many ways, with the simplest and most common

form being an image texture, an array of RGB values. As such, the texture itself – in

contrast to other modalities like BRDFs – does not exhibit view- or light-dependence

(even though the applied shading model might). We distinguish between stationary

and non-stationary textures; the former have uniform visual characteristics across

space [240], i.e., any random patch will share the same statistics as the original

texture, while the latter class does not enforce this and thus can be used to model

spatially-varying appearance.

In contrast to artist-designed images, textures can also be generated procedurally

[58] in various ways, a topic relevant for both Chapter 3 and Chapter 5 in this thesis.

Early work combined noise patterns of varying frequency and amplitude to achieve

realistic-looking variants of water-, glass- and marble-textures [234; 235]. Those

1This can be accelerated via techniques like bounding volume hierarchys (BVHs) and backface-
culling, but the general statement holds regardless.

2.1. A Primer on Computer Graphics 22

Figure 2.1: Textures, created (left to right) by photography, artists, procedural modeling,
style transfer [82], Perlin noise [234] and a generative model [118]. The insets
show the algorithms’ inputs, where applicable.

early principles laid the cornerstone for a whole research field of texture synthesis

and are at the core of many of the texture generators in modern modeling tools (for

an excellent overview we refer to the survey of Raad et al. [247]).

Additionally, textures can be synthesized, either from real-world images [59;

112; 197], or from noise. In the context of this thesis, it is important to note that

the community has developed ways of transforming noise into arbitrary textures

which closely match the visual statistics of a target image. One particularly notable

approach in this line of research is the “neural algorithm of artistic style” by Gatys

et al. [82], where noise is transformed such that its Gram matrices match those of a

reference image in the feature space of a neural network (the VGG-19 architecture

[277]). The insight that the inner product in VGG feature space aligns “unreasonably

well” [333] with the human perception of visual statistics sparked great interested in

the community and was foundational for the research area of neural style transfer.

Notable approaches that will be re-used in Chapter 3 of this thesis are feed-forward

texture synthesis [302], where the lengthy optimization procedure of the original

work by Gatys is replaced by a single network execution (or forward pass), and

methods like Ada-In [125], which transfer the style of one image to another by

aligning their statistics, specifically mean and variance, in VGG feature-space.

It should further be mentioned that there exist learned approaches that train

networks to output plausible textures without relying solely on the style transfer liter-

ature, such as generative adversarial network (GAN)- or diffusion-based approaches,

which regress to the distribution of plausible images, conditioned on an input image

or text prompt [262; 76; 118]. They are out of scope of this thesis and only included

here for completeness. Fig. 2.1 shows examples of the different textures created by

the mentioned approaches.

2.1. A Primer on Computer Graphics 23

Di�use Mirror Specular Combined
Figure 2.2: Schematic types of surface reflectance for an incident light direction. The right

column shows a measured BRDF from the MERL database [189] rendered
onto a sphere using the Cook-Torrance shading model and illuminated by an
environment map.

BSDFs. Contrary to textures, which vary across space but not across angle,

bi-directional scattering distribution functions (BSDFs) describe the way a surface

receives and emits light, and vary across angle, but not across space. Generally

speaking, the BSDF is a function which receives the incoming and outgoing light

directions (ωi and ωo in Eq. 2.1) and determines the ratio between the incident and

emergent light energy. BSDFs can be sub-classed into bi-directional transmittance

distribution functions (BTDFs), which describe how surfaces transmit light and shall

be ignored here for brevity, and BRDFs, which describe the reflectance properties

of a surface [210; 91]. The BRDF determines whether the incoming light is re-

flected diffusely, i.e., scattered in all directions with similar magnitude, or specularly,

i.e., reflected in a mirror-direction, with the intensity of the specular component

determining the strength of the specular highlight (the width of the lobe). Real

materials usually exhibit a combination of diffuse and specular reflectance, as shown

in Fig. 2.2, while being energy-preserving, i.e., they can not emit more energy than

they receive, and Helmholtz-reciprocal, i.e., ωi and ωo are interchangeable.

The accurate representation of BRDFs has been a topic of ongoing research

in the graphics community. Traditionally, BRDFs are measured using a Goniopho-

tometer, a spherical device that holds the material to be measured in the center and

captures numerous measurements from varying illumination- and viewing-angles.

The measurements for each view-light angle pair are then stored in a large look-up

table, which, during later BRDF evaluation, will be queried and interpolated. Since

this capturing approach is expensive, time-consuming, requires delicate calibration

and yields large datasets that require extensive post-processing, alternative methods

expressing the BRDF as parametrized, mathematical models have emerged. These

2.1. A Primer on Computer Graphics 24

have the advantage that they are faster to evaluate and lend themselves well to

optimization, e.g., by regressing the model parameters from real-world observations.

A simple yet historically significant shading model is the Blinn-Phong model

[26], which approximates surface reflectance using a linear combination of diffuse

and specular components as well as ambient lighting. It describes the Lambertian,

diffuse term as the dot-product between incident light direction and surface normal,

while the specular component is expressed as the dot product between the viewing

direction and the half-vector (the vector halfway between the light- and viewing

direction), raised to the power of a glossiness parameter controlling the sharpness

of the specular highlight. However, the simplicity and computational efficiency of

the Blinn-Phong model make limiting assumptions such as uniform surface charac-

teristics, which is why it has largely been replaced in modern graphics pipelines by

more intricate and physically-accurate shading models such as the Cook-Torrance

[41], GGX [310], Ward [314] or Beckmann [18] BRDFs. These models express

surface variations using microfacet-theory, representing the surface as a distribution

of sub-pixel polygons with differing orientations, each reflecting light differently.

This allows modeling effects like roughness (via increasing the microfacet’s normal

variations), geometric attenuation (by the facets masking each other) and accurate

Fresnel or energy conservation, resulting in superior visual fidelity compared to the

simpler Phong model.

The challenges in reconstructing the parameters of these models from sparse,

real-world measurements have motivated numerous approaches, including those

explored in Chapter 3 of this thesis.

svBRDFs, the next-higher level of visual appearance, combine textures and

BRDFs to capture variations across angle and space. They are widely used in media

and industry and constitute the majority of modern graphics assets. Similar to

textures, a spatially-varying BRDF (svBRDF) is defined on a 2D grid and can be

queried using texture coordinates. For each pixel in the grid, the shading model’s

parameters are defined via maps, which are essentially textures encoding the per-

pixel reflectance properties of the asset. These maps typically include diffuse and

2.1. A Primer on Computer Graphics 25

Di�use Roughness DisplacementNormal Rendered

Figure 2.3: svBRDF maps of a stationary (leather, top) and a non-stationary (wood, bottom)
material, from polyhaven.com, with the final path-traced rendering on the right.

specular albedo, roughness, and often additional data such as normal and height

for bump- or displacement-mapping. During rendering, these values are queried

and interpolated based on the hitpoint’s texture coordinates, and then passed to the

employed shading model to compute the final appearance of the surface.

Similar to textures, svBRDFs can be classified as either stationary or non-

stationary, depending on whether their maps exhibit the same visual characteristics

across all spatial sub-patches. Similar to BRDFs, they can be captured using either a

Goniophotometer or light stage, or regressed from measurements and observations

via inverse rendering (for a more detailed description, see Sec. 2.1.4).

2.1.3 The Rendering Equation

In addition to accurate visual appearance, photorealistic rendering needs to model

accurate light transport in the scene. Building on Sec. 2.1.1, the rendering equation,

introduced in the seminal work of Kajiya [140], extends the ray tracing algorithm to

full light paths by describing how light transports in a scene. The equation describes

the combined radiance2 leaving a point x in the outgoing direction ωo as

Lr(x,ωo) = Le(x,ωo)+
∫

Ω

fr(x,ωi,ωo)Li(x,ωi)(n ·ωi)dωi, (2.1)

2The total amount of energy per unit area per unit solid angle emitted or reflected by a point
towards the direction of an observer. In general, Lr, Le, fr and Li can additionally be parametrized by
wavelength λ and time t, which we omit here for brevity.

2.1. A Primer on Computer Graphics 26

Figure 2.4: Light transport phenomena that can be modeled by the rendering equation. From
left to right: caustics created from a glass, global illumination bleeding from the
walls onto the boxes, reflections and refractions on the glass and multi-bounce
light transport, and soft shadows.

where Le is the radiance emitted by x, and Li is the incident radiance from direction

ωi, modulated by the surface’s BRDF fr and attenuated by the angle between the

surface normal n and the incident direction ωi from the upper hemisphere Ω.

To accurately determine the incident radiance Li at x, one must integrate over

all possible directions covering the unit hemisphere around n. However, the radiance

Lr(x′) a neighbouring point x′ emits towards x is itself again dependent on the Li it

receives from all other points in the scene (see Fig. 2.5). This recursive behaviour of

light transport, sometimes colloquially referred to as the “curse of dimensionality”,

thus makes the rendering equation a self-referential integral that cannot be solved

analytically for even the most modest of cases.

x

x’

Figure 2.5

It is, however, precisely this recursive nature that allows

the rendering equation to express many common forms3 of

light transport with great accuracy and physical realism – the

caustics that a glass of wine casts onto a table’s surface, the

soft falloff of an occluder’s shadow or the light bleeding from

one diffuse surface onto another – and that makes it so appealing to light transport

researchers (Fig. 2.4 visualizes these examples). While the graphics community has

accepted that (to date) there is no way of analytically solving the rendering equation,

research has employed several ways of numerically approximating the underlying

integral, the most salient one being Monte Carlo (MC) integration, a concept upon

3Some popular light transport phenomena that remain elusive for the original rendering equation
are participating media like smoke or fog, polarization, fluo- or phosphorescence and wave-optics
phenomena like diffraction or interference.

2.1. A Primer on Computer Graphics 27

which Chapter 4 and Chapter 5 rely heavily.

In Monte Carlo integration, the intractable integral is approximated by a discrete

sum, averaging the contributions from random samples drawn from the integration

domain. Importantly, MC has the convenient property that it allows us to estimate

a solution by simply evaluating the integrand at these random samples. Another

advantageous property of MC methods is that their complexity and convergence

rates are not affected by the problem’s dimensionality.

In the general case, a Monte Carlo estimator of an integral can be written as

∫
Ω

f (x)dx≈ 1
N

N

∑
i=0

f (x)
p(x)

where x are random samples on the integration domain Ω, drawn according to a

probability density function (PDF) p. Indeed, it is this stochasticity that is etymo-

logical to the Monte Carlo estimator: the result of a single execution of f (x) will

vary, depending on the chosen sample4. The average over many samples, however,

will be very close to the true value of the integrand – in fact, arbitrarily close, given

sufficient samples.

In the context of the rendering equation, we calculate a separate MC estimate

for each pixel in the image plane by repeatedly sampling light paths into the scene

starting from this pixel. At each intersection of the path with the scene, the surface’s

properties modulate the energy throughput along the path, such that the final pixel

color is determined by all the ray’s interactions with the scene. After a number of

scene interactions, or “bounces”, we terminate the ray and add the final pixel color

to the current pixel’s estimate.

The ray’s bounces usually are constructed by sampling a random direction

vector at each ray intersection. Unsurprisingly, the uniform PDF is not proportional

to the integrand in most cases. While MC will still return a correct result in the

limit, this discrepancy between f (x) and p(x) will lead to “wasted” samples, i.e.,

rays that do not hit a high-energy region of the scene (such as a light source)

4The Las Vegas estimator, in contrast, will always yield a correct solution (in the information-
theoretical sense, as in, per specification) but vary in runtime [25; 117].

2.1. A Primer on Computer Graphics 28

before being terminated, and thus do not markedly contribute to the pixel’s color

estimate. The graphics community has therefore put significant effort into devising

efficient sampling patterns and distributions which bias uniform sampling towards

regions of higher energy. This process, known as importance sampling, better aligns

the samples’ PDF with the integrand and in turn reduces the estimator’s variance,

leading to faster convergence. The number of importance-sampling techniques is vast,

ranging from cosine-hemisphere, light- and BSDF-sampling over more sophisticated

techniques like next-event estimation (NEE) [243], Metropolis light transport (MLT)

[305], neural radiance caches (NRCs) [202] or Gaussian mixture models (GMMs)

[309], potentially combined via multiple importance sampling (MIS) [304].

However, computing the corresponding sampling density p, which is crucial for

an unbiased estimator, might be non-trivial. One of the ways in which recent, learned

importance sampling techniques circumvent this problem (and which is the basis of

one of the approaches in Chapter 3) is through the use of normalizing flows (NFs), a

family of neural networks that convert one sampling distribution into another while

simultaneously providing the converted samples’ PDF [54; 150]. Popular examples

include neural importance sampling [200] and primary sample space (PSS) sampling

[335; 145]5. In PSS sampling, a NF is trained to map random-uniform samples to

high-throughput samples that are concentrated in the important regions of the scene’s

PSS. The NF simultaneously provides the samples’ PDF, which enables an unbiased

MC estimator and significantly reduces variance in challenging rendering scenarios,

such as scenes with complex lighting, caustics, or glossy surfaces.

On the contrary, a known, analytical PDF can be importance-sampled via inverse

transform sampling [53], also called the Smirnov transform. To do so, we integrate

the PDF to get its cumulative distribution function (CDF), and then invert it either

via algebraic transforms or via precomputed lookup-tables [71; 205; 222] to get the

inverse CDF (ICDF). Feeding random-uniform numbers into the ICDF generates

random samples that are distributed according to the original PDF.

Moreover, one of criteria that the PDF of an unbiased MC estimator must fulfill

5The PSS is a 2(k+1)-dimensional hypercube representing all possible light paths in a scene, i.e.,
all sampling directions for each light ray’s k bounces.

2.1. A Primer on Computer Graphics 29

is p(x) > 0 for all x where f (x) ̸= 0, ensuring that all contributing points x are

sampled with non-zero probability. It is therefore not obvious how to importance-

sample for functions with negative values, as we cannot construct PDFs that align

well with the sub-zero regions of the function. As a remedy, Owen and Zhou [224]

introduce a technique termed positivization, where the function is decomposed into

subparts that are either entirely positive or entirely negative, and a separate PDF is

used for sampling either part before combining the results via MIS. Ascertaining

that the used PDFs are proportional to the function’s absolute value | f (x)| allows

computing an unbiased low-variance estimator on functions with negative values, a

finding that will be re-used in Chapter 4 of this thesis.

2.1.4 Inverse Rendering

Finally, while the previous sections have described the forward rendering process, it

is its inverse that is at the core of this thesis. Contrary to computer vision, whose goal

is to establish scene understanding and -reasoning from images or measurements

(e.g., for semantic segmentation, object detection, etc.), inverse rendering describes

the process of recovering the unknown variables of parametric models used to model

the scene or world – e.g., the parameters of a Phong BRDF. Indeed, early work on

inverse rendering focused on lighting- or reflectance estimation [188; 187], with

Ramamoorthi and Hanrahan [252] framing inverse rendering as a deconvolution

between lighting and BRDF and recovering both illumination and BRDF from

photographs, and Yu et al. [326] presenting a method for recovering the reflectance

properties of scene objects from a sparse set of images.

Inverse rendering, however, should be distinguished from differentiable render-

ing (which uses gradients to drive the optimization process), since inverse rendering

can be performed entirely gradient-free. Papas et al. [225], for instance, use sim-

ulated annealing (SA), a gradient-free optimizer, to regress the parameters of a

heightfield that creates a reference caustic, while Li et al. [167] use reinforcement

learning (RL) to find the parameters of a material graph given a reference image.

Differentiable rendering, in contrast, is the process of deriving and propagating

gradients throughout the rendering process, which in turn can then be used to drive

2.1. A Primer on Computer Graphics 30

inverse rendering scenarios. Popular examples include volumetric rendering, where

neural networks (NNs) [193; 194; 14; 15] or primitives [147; 124] are fitted to

encode real-world scene captures, or reflectance estimation [3; 50; 51; 52], where

svBRDF parameters are regressed from image observations.

While differentiable rendering will be treated separately in Sec. 2.3, it should

be noted that modern inverse rendering is often done in the neural network domain,

since the NN’s smoothness lends itself well to optimization. How exactly these

networks are optimized will be discussed in the next section.

2.2. Learning and Optimization 31

2.2 Learning and Optimization
For reasons of brevity, this thesis will not give in-depth explanations about deep

learning theory or detail the specific neural networks or architectures used. While it

has been shown [168] that architectural decisions certainly do influence the learning

behaviour of these models (e.g., the use of residual- or skip-connections [264; 104]),

we can – in a more general sense – abstract the network as a function fφ , which

consumes some input θ and whose parameters φ control the function’s behaviour

and can be adapted through different techniques. We assume the reader to be familiar

with basic machine learning (ML) concepts like multi-layered perceptrons (MLPs)

and convolutional neural networks (CNNs). For an excellent overview of the plethora

of additional deep learning architectures and techniques, we refer to the textbook by

Goodfellow [86].

2.2.1 Gradient-based Learning

The powerful advantage of using learning-based approaches is that they can be fit to

observed measurements and data, thus allowing us to iteratively improve upon our

imperfect, possibly hand-crafted models. In modern machine learning and neural

network optimization, the cornerstone method is undoubtedly gradient descent,

particularly its first-order variant. The concept is straightforward: after feeding

some input θ through our model or function, we can compare its prediction to the

corresponding ground-truth data (also called target or reference) and calculate the

error e:

fφ (θ) = ŷ, e = ŷ− y .

Subsequently, in order to minimize the model’s error (i.e., to maximize its usefulness),

we find an analytical expression for the cost landscape6 and then descend a small step

against to the gradient of this landscape, i.e., into the direction of steepest descent,

to decrease the model error and hence improve its prediction for the next iteration.

Iterative application of this process will converge in a valley of the loss landscape,

6The terms loss and cost are used interchangeably in the ML literature. Both are to be differentiated
from the model’s error, which simply is the difference between the model’s prediction and the
corresponding ground-truth data. The loss (or cost) is an additional function that is acting on this
error, popular examples are the mean squared error (MSE) or Kullback-Leibler divergence (KLD).

2.2. Learning and Optimization 32

where the slope is zero, and hence yield a (local) minimum. Interestingly, gradient

descent works agnostic to the parameters that are being updated: we can use it to

decrease the error by updating either the model’s parametrization φ (the common

scenario in NN training, where the network weights φ are changed to better fit some

data) or by assuming a fixed function fφ and updating the model’s input θ (a common

scenario in inverse rendering). Additionally, there exist hybrid combinations where

both the model input and parameters are adapted simultaneously; examples are

meta-learning (Sec. 2.2.2) and joint radiance field- and camera optimization [228].

The mainstream popularity of gradient descent in the modern machine learning

literature is owed to several factors. First, it scales well to billions of parameters

and is trivially parallelizable, across both parameters and compute devices. Second,

it is integrated with most modern machine learning frameworks through dedicated,

efficient and easy-to-use automatic differentiation (AD) libraries like PyTorch’s

AUTOGRAD [231], JAX’s AUTODIFF [31; 30] or Tensorflow’s GRADIENTTAPE [1].

Explicit gradient information therefore is readily available, a necessary precondition

for gradient descent in contrast to derivative-free or rule-based systems (discussed

later in Sec. 2.3.4). Finally, gradient descent benefits from a long history of research,

enjoys strong convergence guarantees (under convex objectives) and has proven to

be easily robustifiable to optimization noise.

Importantly, gradient descent is most often used in its first-order variant, due to

factors like computational efficiency. As such, it computes the local gradient at the

current position in parameter space. For the case of noisy or rugged loss landscapes,

this can be extremely detrimental, as it makes the algorithm susceptible to getting

stuck in local minima. A concept that alleviates this is the notion of stochastic

gradient descent (SGD), which, instead of processing the whole input dataset before

gradient evaluation, computes the gradient on a stochastic subset, or (mini-) batch, of

the dataset. This concept, introduced originally to alleviate computational constraints

practitioners were facing with large datasets, has surprisingly been shown to improve

convergence of gradient descent in the presence of noise [61; 102]. This is attributed

to the fact that the stochasticity introduced by mini-batch sampling not only reduces

2.2. Learning and Optimization 33

computational costs but also acts as a regularizer, helping models escape sharp

minima and find flatter, more generalizable solutions, where low loss values are

achieved even in (or precisely due to) the presence of stochastic noise.

Overall, most AD frameworks compute the gradient of the loss w.r.t. the

optimization parameters via recursive application of the chain rule, which allows

expressing the gradient of a composition of functions as the product of the functions’

individual gradients. For the common example of a scalar loss function L acting on

the model’s prediction error, this can be expressed as

L(ŷ,y) = L(fφ (θ),y) (2.2)

∂L
∂θ

=
∂L

∂ fφ (θ)
·

∂ fφ (θ)

∂θ
. (2.3)

Notably, the chain rule is employed purely for convenience: one could just as well

derive manual expressions for each parameter’s gradients using pen and paper, and

directly hard-code them in the gradient update step. This increased implementation

effort would lead to significant savings in computation time and memory and is one

of the key drivers of efficient rendering frameworks [157; 147]. Most gradient-based

optimizers and applications, however, employ the standard autodiff-backpropagation

via the chain rule for ease of development. As we will see later in Sec. 2.3, this

convenience sometimes comes at a price. Indeed, in certain scenarios, the naı̈ve

application of the chain rule will lead to incorrect gradients.

Without going into detail, it is worth briefly mentioning the role of optimizers

in learning. Once the gradients are computed, various strategies exist for updating

the model parameters. The standard stochastic gradient descent (SGD) update rule

subtracts the gradient, scaled by a learning rate, from the current parameters. More

advanced methods extend this with auxiliary hyperparameters or leverage additional

information to improve convergence. One early example is the momentum- or

heavy-ball strategy proposed by Polyak [239], which adds inertia to the descent

direction to smooth out oscillations (i.e., the etymological heavy ball’s descent does

not get stalled by local minima as easily). The more modern Nesterov momentum

2.2. Learning and Optimization 34

[209] extends this by computing the gradient at a point slightly ahead of the current

parameters, effectively ”looking ahead” to correct the update direction and reduce

oscillations. The popular Adam optimizer [149] combines momentum with adaptive

learning rates by maintaining moving averages of both the gradients (first moment)

and their squared values (second moment), enabling smoother gradient estimates

and faster convergence. In spite of its popularity, it should be noted that Adam is

not free of flaws; recent research, for instance, has shown that its per-parameter

normalization does not preserve rotation equivariance for vector-valued parameters,

leading to suboptimal optimization results [173].

In summary, gradient descent can well be described as the workhorse of modern

machine learning optimization. Yet, despite its many advantages, it struggles with

poorly conditioned problems, saddle points, local minima and vanishing or exploding

gradients, requiring techniques like gradient clipping, learning rate scheduling, and

preconditioning.

For completeness, it should be mentioned that there exist higher-order descent

methods that leverage more information about the loss landscape, such as curvature,

to improve convergence. Popular examples are the LBFGS [175; 241] or Levenberg-

Marquardt [165; 186] algorithms and Newton-Raphson-type methods [244]. These

methods, while offering improved convergence, come with their own set of limi-

tations, such as computational complexity due to the use of Hessian information

and often suboptimal scaling with problem dimensionality, hindering their adop-

tion in mainstream machine learning literature. Since they are not actively used

in this thesis, we will defer their discussion to rendering-specific sub-problems in

Sec. 2.3. Similarly, the antonym of gradient-based optimization, derivative-free

optimization (DFO), will be discussed in Sec. 2.3.4.

The following sections will outline the fundamentals of two applications of

gradient-based learning: meta-learning, where models learn to optimize efficiently,

and differentiable rendering, where (proxy-) gradients are used to solve inverse

rendering problems.

2.2. Learning and Optimization 35

2.2.2 Meta-Learning and Learning to Learn

Meta-learning lifts learning to the meta-domain by optimizing over gradient descent

itself. The core idea behind gradient-based meta-learning7 is to repeatedly optimize

a model’s performance on a base learning task, and then, using the information

gathered from these previous optimization runs, improve the model’s performance

on future, unseen individual tasks. In the seminal Model-Agnostic Meta-Learning

(MAML) algorithm introduced by Finn et al. [63], the learning task therefore is

divided into two steps: first, the model performs an inner loop, where a limited

number (usually between five to ten) of gradient descent update steps are taken. This

is followed by an outer loop, which utilizes the final performance of the inner loop as

optimization target and takes a step along the meta-gradient to improve the model’s

performance during the next inner loop iteration. This meta-gradient, flowing back

from the outer through the inner loop, can be thought of as carrying the information

necessary for “learning from previous optimizations”, i.e., taking into account how

the model adapts under gradient descent steps at the current iteration (Fig. 2.6 gives

a schematic overview of the inner-outer-loop separation and gradient flow). The

Outer loop:
 all tasks in dataset

Random pick

Inner loop:
overfit onto one task

GD

GD GD

Meta-gradient

Model init.

Figure 2.6: Schematic overview of the MAML algorithm: In the outer loop, a single task
is sampled from the set of learning problems and processed in the inner loop,
where the learner takes a small number of gradient descent (GD) steps towards
the task reference, before a final loss L is computed, whose gradient is then
backpropagated to the model initialization.

model therefore learns a prior (the literature often uses the term “inductive bias”)

over the base task in the outer loop, while the inner loop is used to quickly adapt this

7For completeness, it should be mentioned that there exist gradient-free meta-learning strategies
like learning the parameters of evolutionary algorithms [158], which are out of scope here.

2.2. Learning and Optimization 36

general knowledge to specific tasks. Examples of such priors and individual tasks

are numerous; the physics underlying a quadruped’s locomotion and the quadruped

moving to a specific target location in a navigation task, or the stochastic appearance

pattern that forms a texture and the actual realization of a specific wood or stone

texture in a texture synthesis tasks.

Meta-learning therefore fills the gap between the more traditional learning

paradigms overfitting, general inference and fine-tuning (for a more thorough expla-

nation of this taxonomy, see Chapter 3) by extending this landscape with a “learned

(general) fine-tuning” approach: by leveraging gradient information through the

inner loop, i.e., through gradient descent itself, we can take into account how the

model updates over time and optimize for this behaviour in an end-to-end fashion.

MAML thus allows adaption to new, unseen tasks from the same domain in only

a few gradient descent steps (thus achieving fast inference within seconds) and

with high accuracy. The algorithm has been applied to the model’s initialization

[63; 296], SGD’s per-parameter learning rates [172], sampling patterns for BRDF

reconstruction [174] or smoothing functions [319]. MAML has sparked significant

follow-up work: CAVIA [339] meta-learns a context-agnostic set of base parameters

and only modulates a small set of task-specific parameters, WarpGrad [73] introduces

warp-layers that meta-learn a smoother optimization landscape and Deleu et al. [46]

meta-optimize across the number of inner loop optimization steps.

An important distinction is to be made between meta- and hyper-learning,

although the terms are sometimes used interchangeably. The consensus in most of

the literature, and in this thesis, is that meta-learning directly optimizes over the

parameters of a model, whereas hyper-learning uses one model to directly, in a

feed-forward manner, predict the parameters (for instance, NN weights) of a second

model, which will then perform some downstream task. Hyper-learning therefore

effectively bypasses the need for task-specific optimization during inference, gaining

in memory efficiency at the cost of generality. Adapting the hyper-network is trivial

since it produces weights of another network, i.e., the parametrization of a (smooth)

function, through which we can easily calculate gradients.

2.2. Learning and Optimization 37

Another flavor of meta-optimization is learning-to-learn (L2L), where networks

learn to directly predict parameter updates or gradients given past observations.

Hyper network

Task network

...

Weights

Recurrent network

Parameters

+

Hyper-learning Learning-to-learn

Figure 2.7: Schematics of hyper-learning and learning-to-learn.

This approach has first

been popularized by

Andrychowicz et al. [6]

and since then sparked

significant follow-up

work. The underlying

idea to use a network

which, conditioned on

the previous optimization states, directly outputs new parameters or, more com-

monly, the per-parameter gradients that are suitable for the optimization problem.

Typically, L2L uses recurrent neural networks (RNNs), mostly long short-term

memory (LSTM) networks [113], since they can reason over time by compressing

previous optimization information into their hidden state, thus allowing memory sav-

ings since the entire optimization trajectory needs not to be stored in memory or the

weights of a neural network. For the case of short optimization trajectories, unrolling

is sometimes used, where an RNN’s sequential layers are unrolled along the time

axes and stacked along the network’s depth. This enables gradient predictions in a

single network forward pass but is limited to small networks and few time steps due

to otherwise prohibitive memory consumption. Adler and Öktem [2] show that this

technique can be used to reconstruct tomography images, while Flynn et al. [74] use

unrolling for novel view synthesis.

In general, however, L2L approaches often perform inferior to meta-learning

methods like MAML or CAVIA, and are harder to train due to the brittleness of

LSTM training. They are not used throughout this thesis, so they will not be further

discussed here. The area might, however, experience renewed interest with the recent

release of the extended LSTM (xLSTM) architecture [17].

2.3. Differentiable Rendering 38

2.3 Differentiable Rendering
With a solid foundation about light transport and optimization, we can now approach

the core of this thesis: the problems that arise when differentiating the rendering

process. Note that rendering becomes easily differentiable when executed by a neural

network [206; 193; 298; 155; 332], which is usually a problem-specific solution

and thus unfit for general purpose differentiable rendering. The following section

will therefore review the general-purpose differentiable rendering approaches with

relevance to this thesis by first formulating a concise list of problems in differentiable

rendering and then discussing current approaches in conjunction with their respective

solutions to these problems.

2.3.1 Problems with Rendering Gradients

Problems in differentiable rendering can arise in the following scenarios:

(a) Gradients are undefined. At point singularities or -discontinuities, e.g., the

kink in the ReLU, the function is continuous but its gradients are undefined.

In theory, this could cause gradient-based optimizers to diverge. In practice,

however, this surprisingly poses little problem, since many frameworks have

hard-coded numerical values for these edge cases or resort to sub-gradients.

Moreover, these discontinuities are very unlikely to be hit in an optimization.

(b) Gradients are zero. This more prominent scenario occurs for two reasons:

Firstly, the renderer might use functions that are non-differentiable, i.e., whose

derivative is zero everywhere and then gets multiplied during autodiff’s chain

rule application, leading to zero gradients altogether. Secondly, long-range

dependencies in the optimization might not be accurately reflected by the

employed objective function, which often operates pixel-wise, leading to

regions of zero change (plateaus) in the objective, which effectively stall the

optimization due to the gradient being zero.

(c) Gradients are unknown. This occurs when we are dealing with non-

differentiable pipelines or languages, such as Blender or OpenGL. Since

the framework is not written in a language that supports native AD, we cannot

2.3. Differentiable Rendering 39

easily backpropagate the image-space error to the current parameters. Re-

writing the required operations to be differentiable is a manual and tedious

process that does not scale, and even hard-coding the gradient expressions

might be impossible due to performance or hardware constraints.

(d) Gradients are memory-expensive. This issue stems from the fact that

autodiff-frameworks record and store all forward computations in order to run

backpropagation, and arises when differentiating through a MC path tracer:

since naı̈ve application of AD and the chain rule must store each light bounce

for each ray for each pixel as a node in the computation graph or gradient tape,

rendering (and differentiating) a full scene requires prohibitive amounts of

GPU memory for even modest resolutions8.

(e) Gradients are incorrect. Additionally, MC path tracing might suffer from

incorrect gradients for the case of discontinuous integrands, which frequently

occur, e.g., for positional- or BRDF-derivatives. Naı̈vely applying automatic

differentiation to the MC estimates of the pixel radiance will yield incorrect

gradients here due to the fact that, under discontinuous integrands (e.g., the

silhouette of an object moving through the pixel), Leibniz’ rule of differentia-

tion under the integral sign is violated and the interchange of integration and

differentiation – which is precisely what AD is doing – is no longer valid.

(f) Gradients are noisy. The two most prominent causes for the issue of high-

variance gradients in differentiable rendering are noise from MC sampling,

which can be tackled via established techniques like importance sampling or

control variates, and noise from re-building gradient estimates from scratch

at each optimization iteration, a situation that is common for SPSA-style

estimators.

The following sections will now detail the differentiable renderers that are used

throughout this thesis and those of scientific relevance in the context of differentiable

rendering as it is used here, referring back to the above list of problems as Prob. (i).

8For an impressive visualization of such a graph see the suppl. video to [220], 4:45min onwards.

2.3. Differentiable Rendering 40

2.3.2 Differentiable Rasterization

The main issue in differentiating the rasterization process is the first case of Prob. (b):

non-differentiable functions in the rendering pipeline. Specifically, the Heaviside

step function in the edge- and z-tests (see Sec. 2.1.1), which returns either one or

zero and whose gradient thus is undefined at the step and zero everywhere else.

Evidently, the use of this function in conjunction with the chain rule will lead to

zero gradients for the entire pipeline. Differentiable rasterizers therefore use several

techniques to prevent this: a traditional, hard rasterizer can be made differentiable

by either using soft approximations of the non-differentiable step function or by

approximating the gradients themselves during the backward pass.

Soft Approximations. The problem with using a hard rasterizer during the forward

pass is illustrated in Fig. 2.8: no (infinitesimally) small change to the parameters θ1

or θ2 will change the color at pixel P1, since the triangle does not overlap the pixel.

Assuming a non-negligible difference in depth, a similar argument can be made for

the occluded vertex of the smaller triangle behind pixel P2: no small change will

bring the vertex to the front, therefore, the image-space loss will not change, which

leads to the gradient w.r.t. this parameter being zero everywhere.

Figure 2.8: Hard (left) and soft (right) rasterization.

However, as illustrated on

the right side of Fig. 2.8, we can

use a soft approximation of the

rigid step function, e.g., a Sig-

moid, whose smoothness can be

controlled by the slope’s incli-

nation. This leads to the hard

edge-tests becoming smooth, i.e., the parameters θ1 and θ2 now continuously influ-

encing the pixel color at P1. In a similar spirit, the hard z-test can be replaced by a

smooth aggregation function, usually chosen to be a variant of the softmax-operator,

such that all triangles under the pixel of interest contribute to its final color and

thus receive gradients during backpropagation. In combination, these operations

allow the image-space gradients to flow from pixels to (potentially distant) triangle

2.3. Differentiable Rendering 41

vertices and create a differentiable rasterizer that can optimize 3D attributes from

pure 2D supervision. Note that the other operations employed in a rasterizer, such as

projections and vertex interpolation, are continuous and differentiable by design and

do not need special treatment.

The first to leverage this principle for differentiable rasterization were Liu et al.

[179]. Interestingly, they formulate the Sigmoid decision boundary that models

the influence of a parameter on a pixel as probability, which establishes interest-

ing connections to variational optimization, discussed in Sec. 2.3.4. The optimal

choice of smoothing function (or probability distribution), however, is non-trivial

and problem-dependent, as shown by Petersen et al. [237], who conduct a study

comparing different approximations and aggregation functions. Wu et al. [319]

therefore propose to meta-learn the optimal smoothing function.

The idea of replacing non-differentiable functions with smooth approximations

is the basis of the approach presented in Chapter 4 of this thesis.

Interestingly, these soft approximations come with the drawback of making

the final image blurry, since hard surfaces now become transparent around their

silhouettes, necessitating schemes of scheduling the blur over the course of the

optimization or hyperparameter tuning.

Analytical Derivatives. The second way of making a rasterizer differentiable, as

mentioned in the beginning of this section, is to keep the original, hard rasterizer

during the forward pass, but to approximate the gradients during the backward pass.

In their seminal work OpenDR, Loper and Black [182] derive local pixel-space

gradients via differential filtering, i.e., repeated execution of the standard forward

rasterizer with small perturbations in positive and negative x- and y-direction, akin

to a Sobel filter. While this works for simple scenarios, this locality leads to poor

optimization performance, since semi-distant triangle vertices cannot influence the

current pixel color and therefore are not optimized correctly. Similarly, Kato et al.

[143] propose the neural mesh renderer (NMR), which approximates gradients

during the backward pass by linearly interpolating between the values found left

and right of the discontinuities and then uses the slope of this interpolated line as

2.3. Differentiable Rendering 42

gradient signal. Both methods are unable to model non-local pixel-vertex interactions

and to optimize a triangle’s depth [179]. NVDiffRast [157] introduces a different

approach to differentiable rasterization by employing a triangle coverage test based

on barycentric coordinates for analytic antialiasing. After finding all triangles on

silhouette edges via discrepancies of their triangle IDs, they use distance-to-edge

antialiasing (DEAA) to propagate visibility and occlusion gradients between adjacent

triangles. This involves calculating where and to what extend the line connecting

the pixel centers is intersected by the silhouette, which produces a blend weight that

determines how much each adjacent pixel’s property (e.g., color) affects the final

pixel value. This ensures smooth gradient flow across edges and occlusions and

enables depth and visibility optimization.

Note that all the above approaches do not necessarily strive to produce correct

gradients, but are rather focused on useful gradients, as mentioned in the excellent

survey by Kato et al. [144]. Metz et al. [192] additionally show that gradient

correctness does not necessarily entail usefulness in an optimization.

Blurring. Combining the idea of analytical derivatives and soft approximations, the

concept of blurring in image space has also been used for differentiating through

the rasterization process. Reddy et al. [254] propose a smooth aggregation function

for SVG images and additionally regularize their approach via multi-resolution

processing and spatial smoothing through Gaussian pyramids [255]. Rhodin et al.

[259], on the other hand, propose a novel scene model which replaces traditional,

hard primitives (and their corresponding discontinuous visibility changes) with

Gaussian densities. These can be analytically ray-traced and lead to smooth visibility

falloffs, allowing for proper gradient flow from image to 3D properties.

As with soft approximations, blurring in image space usually requires care-

ful tuning and scheduling of hyperparameters (e.g., the standard deviation of the

Gaussian), since we usually are comparing the blurred image to a hard reference. A

similar blurring-trick will be reused in Chapter 4 and Chapter 5 of this thesis, albeit

in parameter- instead of image space.

2.3. Differentiable Rendering 43

2.3.3 Differentiable Path Tracing

While (differentiable) rasterization is limited to modeling local shading, general-

purpose differentiable MC path tracing can backpropagate through the entire light

transport in a scene and thus is a versatile tool for optimizing secondary effects like

global illumination or BSDF parameters. However, this introduces certain problems

that need to be solved, serving as one of the motivations for Chapter 5 in this thesis.

Memory Consumption. As mentioned in Prob. (d) of the initial list of gradient

problems, in order to be able to run the gradient computation backwards through

the computation graph, the entire forward model must be stored in memory. This

requires storing all computations at each ray-scene intersection (i.e., each bounce) of

each ray of each pixel, which quickly becomes prohibitive. As an elegant remedy,

the adjoint formulation has been proposed by both Nimier-David et al. [220] and

Stam [287]. The idea is that, instead of storing all the light rays and then “walking

back” their paths through the scene during backpropagation, the rendering process

is split into two phases: a primal and an adjoint rendering pass. The primal pass

computes a standard MC path traced image, which is then compared to the reference

under an objective L. The adjoint pass propagates a novel quantity, the so-called

“differential radiance”, through the scene (see [220] for a mathematical definition).

This quantity is emitted by objects whose gradients we would like to calculate, e.g.,

the brightness of a light source in the scene, and scatters through the scene like

regular radiance, making it amenable to the benefits of decades of MC rendering

research. Crucially, the differential radiance received by the camera sensor is a

MC estimate of the gradient of L w.r.t. the scene parameters, i.e., the gradient of

the forward rendering. In addition, reformulations via self-adjoint operators allow

exchanging the propagation directions: Nimier-David et al. [220] show that it is

possible to scatter differential radiance from the sensor into the scene, the same way

regular radiance scatters, and thus vastly reduce the estimate’s variance, saving on

computation and time.

One issue of this formulation, however, is that the derived equations for the

differential radiance reference the primal incident radiance, thus coupling the two

2.3. Differentiable Rendering 44

light transport simulations. This requires recursive integral evaluations for both

quantities, leading to a quadratic memory footprint in the number of scattering

events. While Nimier-David et al. [220] propose a version of the adjoint algorithm

that circumvents this problem at the cost of bias, Vicini et al. [306] show that this bias

can have severe consequences for the optimization and instead propose to “replay”

the primal paths with the same random variates, leading to a scheme for unbiased

gradients with linear memory footprint.

Discontinuous Integrands. Another problem that differentiable MC path tracing

has to take into account are potential discontinuities in the radiance integrals, as

mentioned in Prob. (e). Let’s take positional derivatives as a motivating example:

given the current pixel P(θ) depending on the scene parameter θ , the standard way

of estimating the derivative of P w.r.t. θ is tracing a few rays through P before

calling automatic differentiation to get the gradients9. In short, we are interested in

the derivative of the pixel integral (top) and its MC estimator (bottom)

P(θ) =
∫

Ω

f (x,θ)dx (2.4)

P̂(θ) =
1
N ∑

i
f (xi,θ) (2.5)

which, according to Leibniz rule of differentiation under the integral sign with

constant boundaries [72], can be expressed as

∂

∂θ
P(θ) =

∂

∂θ

∫
Ω

f (x,θ)dx =
∫

Ω

∂

∂θ
f (x,θ)dx (2.6)

∂

∂θ
P̂(θ) =

∂

∂θ
∑

i
f (xi,θ) = ∑

i

∂

∂θ
f (xi,θ) . (2.7)

In particular, for the discrete case which we are computing (and differentiating)

in practice, an estimator of the gradient simply is the gradient of the estimator,

expressed as the sum of the individual samples’ derivatives. However, moving the

derivative operator inside the integral is only valid if the integrand (and its derivative)

9Note that the previous section on accelerating AD in differentiable MC path tracers is completely
orthogonal to this section: using the adjoint formulation without special consideration of positional
derivatives will yield incorrect gradients, while the memory footprint of both re-sampling and
reparametrization will still be prohibitively large without the adjoint formulation.

2.3. Differentiable Rendering 45

exist and are continuous in the parameter to be differentiated [183].

For the initial example of positional derivatives, this is not the case around

silhouette edges: once the edge starts moving into the pixel, the integrand will at one

point inevitably jump, namely when the edge crosses a sampling location, leading to

a discontinuity in the integrand and thus the violation of the right-hand equality in

Eq. 2.7. However, automatic differentiation – being unaware of this fact – will still

compute the right side of Eq. 2.7, resulting in incorrect derivatives (see the right part

side of Fig. 2.9 for an example).

Reference Auto-Di�.
Figure 2.9: Gradients w.r.t. a rotation of the cube, in

blue and red for pos. and neg. magnitude,
respectively. Figure adapted from [183].

The literature therefore

employs two main approaches

for resolving this problem:

edge sampling and integral

reparametrization. Both ap-

proaches remark that the pixel

integral can be decomposed

into a continuous part which can be automatically differentiated without issues

(e.g., Phong shading or texture interpolation, similar to the continuous operations

in differentiable rasterization in Sec. 2.3.2), and a boundary term, which causes

discontinuities and thus requires special treatment.

The main idea behind edge-sampling originates from the fact that traditional

area-sampling does not accurately capture the small variations caused by, e.g.,

moving triangles. This becomes visible in Fig. 2.10, which displays a pixel and

two enclosed triangles: in the left part, the blue triangle is moving upwards,

Area Sampling Edge Sampling Reparametrization

Figure 2.10: Sampling methods for discontinuous inte-
grands. Figure partially inspired by [169].

but the change in covered pixel

area (and thus in pixel color) is

not reflected by the area sam-

ples (in black). Li et al. [169]

therefore propose to sample the

pixel on the triangle edges (mid-

dle part in Fig. 2.10). The key idea here is that each edge divides the space into two

2.3. Differentiable Rendering 46

half-spaces (with different color values, since they are on different triangles), and

that the final pixel color is a weighted combination thereof. Since edge-sampling

yields samples exactly on the boundary between the two half-spaces, moving them

will change the ratio between the colors and thus continuously influence the final

pixel integral, leading to correct and unbiased gradients for the boundary term. Addi-

tionally, occlusion is resolved correctly by design, since moving occluded samples

does not contribute to the boundary integral.

This technique is, however, non-trivial to extend to secondary visibility and

to importance-sample, since there are millions of triangles in a scene and infinite

possibilities of placing samples on the triangles’ boundaries, without a clear way

of determining the regions of high importance. Loubet et al. [183] therefore pro-

pose an alternative, the so-called reparametrization solution. They observe that the

integrand’s discontinuities are caused by changing θ and propose to remedy this

by integrating in a space where the samples follow, i.e., move in tandem with, the

parameter θ . This is achieved via a change of variables in the integral, effectively

offsetting the samples’ position by the same amount with which the discontinuity

(or the triangle causing it) moves (right side in Fig. 2.10). The resulting integral

can be solved by standard MC techniques and differentiated via AD, since it is

now smooth in θ . Using an efficient implementation of this reparametrization via

spherical convolutions, the reparametrization method outperforms edge-sampling in

terms of speed by an order of magnitude.

Both techniques, while being able to successfully differentiate through the MC

path tracing process in a general-purpose fashion, require expert knowledge about

rendering and light propagation and significant implementation effort, constraining

their use to the graphics community and their respective implementations, Redner

[169] and Mitsuba [129]. Chapter 5 of this thesis therefore asks the question whether

we can “get away” with something simpler; making less assumptions, requiring

less implementation effort and supporting more (arbitrary) forward models. The

necessary fundamentals will be discussed in the subsequent section.

2.3. Differentiable Rendering 47

2.3.4 Variational and Gradient-Free Optimization

Contrary to the previously discussed approaches, both variational- and derivative-

free optimization (DFO) aim to make as few assumptions as possible about the

underlying model that is being optimized. While Jamieson et al. [134] show that the

convergence of DFO methods is generally inferior to gradient-based methods, this

generality and their applicability to arbitrary forward models make them attractive

for optimizing non-differentiable programs or languages. The field of DFO can be

divided into methods that try to estimate a gradient, usually via function evaluations,

and methods that try to find local minima via population sampling, e.g., through

evolutionary strategies. DFO is complemented by variational optimization, which

takes a probabilistic approach closely tied to Bayesian modeling and aims to descend

along a smoother, stochastically perturbed function of the objective with similar

local minima as the original objective function.

Gradient Estimators. Gradient estimation techniques can further be grouped into

zeroth- and first-order methods. Zeroth-order methods do not use any derivative

information and use function evaluations to determine the estimated descent direction.

A classic example are finite differences (FD), which evaluate the function under

small perturbations to determine the slope of the function response. The combination

of forward and backward difference, the central difference, is defined as

∂ f (θ)
∂θi

≈ f (θ + ε θi)− f (θ − ε θi)

2ε
, (2.8)

where ε is a hyperparameter usually set to a small number and θi is a one-hot

unit vector modulating only the i-th component of θ . As ε approaches zero, this

approximation becomes more and more accurate [221], but Eq. 2.8 already reveals

the main drawback of this method: since we need to modulate θ component-wise,

estimating the full gradient ∇θ requires 2n function evaluations for an n-dimensional

parameter. One remedy to this approach was introduced by Spall [283] via the

simultaneous perturbation stochastic approximation (SPSA) algorithm: instead of

perturbing each dimension individually, SPSA perturbs all dimensions at once, and

2.3. Differentiable Rendering 48

estimates the gradient as

∂ f (θ)
∂θ

≈ f (θ + ε p)− f (θ − ε p)
2ε p

. (2.9)

Notably, p here is a vector of mean-zero random variates, leading to the etymological

simultaneous perturbation. SPSA thus allows to estimate a gradient with only two

function evaluations per iteration independently of problem dimension; a significant

improvement to the 2n evaluations required by finite differences, especially as di-

mensionality increases. This estimator, although derived from a different perspective,

can be interpreted as a special case of the plateau-reduction approach presented in

Chapter 4 of this thesis.

The idea of gradient estimation via measurements of the loss function can be

extended via (local) fitting of a parametric model to these loss samples. This class

of algorithms, often summarized as surrogate- or model-based gradient estimators,

form the basis of the approach discussed in Chapter 5 of this thesis.

Gradient-Free Optimizers. In lieu of analytic or estimated gradients, the predomi-

nant other class of algorithms is the one of search-based, gradient-free optimizers,

which will validate the approach discussed in Chapter 5 and shall thus shortly be

reviewed here.

An ever-popular, illustrative example of gradient-free optimizers are genetic

algorithms (GAs), where an initial population of candidate solutions evolves over

time. The idea behind GAs (and, in fact, many other evolutionary strategies like

particle swarm optimization (PSO), the bat-algorithm or ant colony optimization),

is that this population’s fitness is measured by an objective function that closely

resembles (often: is identical to) the loss function that we seek to optimize. Each

individual population member, after traversing a part of the search space, is then

assessed through this objective function and only the “fittest” members are allowed

to procreate – thus spawning new offspring candidates – and advance to the next gen-

eration, while the remaining solutions are discarded. Evolutionary algorithms thus

incrementally hone in on promising regions of the search space while keeping the

exploitation-exploration balance through random mutations of promising individuals.

2.3. Differentiable Rendering 49

The covariance matrix adaptation evolution strategy (CMA-ES) extends this process

by modeling the underlying procreation- and mutation-probabilities as distributions

and adapting their covariance matrices over time. While respecting this correlation

between solution candidates and time steps significantly aides optimization perfor-

mance, it also requires the storage of the quadratic covariance matrix, which quickly

becomes expensive for high-dimensional problems.

Contrary to evolutionary strategies, simulated annealing (SA), another popular

gradient-free optimizer, models the exploration of the search space via the analogy

of annealing metals in metallurgy and thermodynamics. Based on an initial can-

didate solution, new solutions are sampled around the current solution based on a

temperature parameter determining the sampling radius. The temperature parameter

“anneals”, i.e., diminishes, over time, thus limiting the sampling radius (and thus the

exploration of the search space), as well as the probability of accepting an inferior

solution in hope of future reward. SA uses purely random exploration, not taking

into account how well individual solutions perform and as such is preferable over

evolutionary or gradient-based methods when an approximate, global optimum is

more desirable than an accurate, local minimum.

The Achilles’ heel of gradient-free optimizers, however, is the dimensionality

of the optimization problem to be solved. While they might work well on low-

dimensional problems, the increased inter-variable dependencies, search space extent

and exacerbated noise that come with more dimensions often lead to non-convergence

when problem dimensionality increases. Chapter 5 shows how the spectral bias of

neural networks can be leveraged to circumvent this limitation.

Variational Optimization. Having examined gradient estimators and search-based

approaches, we now turn to variational optimization, where parameter updates of-

ten rely on probability distributions over candidate solutions. The intuition here

is often that, although the original function might not be differentiable, we can

differentiate over the expectation of a perturbed version of this function. Build-

ing on results from Gumbel [94], an illustrative example is provided by Berthet

et al. [22] through their perturbed optimizers, which allow the differentiation

2.3. Differentiable Rendering 50

of arbitrary functions through variational perturbation. The idea is that, instead

of computing the gradient of a single function, we compute the gradient of a

perturbed ensemble of function evalations, where the perturbations follow cer-

tain characteristics (e.g., for the case of [22], are from a zero-mean distribution).

Figure 2.11

Contrary to the single-evaluation case, changes

to the optimization parameter θ will then result

in changes of the expected value of this ensemble

and thus yield smooth changes even on plateaus

or discrete spaces, given the right choice of dis-

tribution parameters. Fig. 2.11 illustrates this: the black, rigid parameter would

achieve a zero gradient, since it lies on a constant region of the solution space. The

variational interpretation (the blue circle) instead achieves a non-zero gradient, since

moving the parameter will now continuously influence the expected loss.

Le Lidec et al. [161] apply this principle to rendering and successfully differ-

entiate through a rasterizer. Staines and Barber [285, 286] further remark that the

difference between the variational objective, i.e., the loss function under perturbation,

and the rigid objective can be made arbitrarily small under the assumption that the

employed distribution allows the contraction of its probability mass to a sufficiently

high density, such as the Gaussian distribution, for instance.

In the context of robotics, variational optimization is also termed stochastic

smoothing [57] and used for differentiating through non-differentiable events such

as collision or contact [291; 196]. Finally, Chaudhuri and Solar-Lezama [36, 37]

establish the term “smooth interpretation” and show that entire programs can be

made differentiable through Gaussian perturbations, a finding which both Chapter 4

and Chapter 5 will heavily rely on.

With the fundamentals of image formation, light transport, learning and differ-

entiating through these processes now covered, the following chapters will introduce

the individual algorithms that form the main contribution of this thesis.

Chapter 3

Metappearance: Meta-Learning for

Visual Appearance Reproduction

Abstract

There currently exist two main approaches to reproducing visual appearance using

Machine Learning (ML): The first is training models that generalize over different

instances of a problem, e.g., different images of a dataset. As one-shot approaches,

these offer fast inference, but often fall short in quality. The second approach does

not train models that generalize across tasks, but rather over-fit a single instance

of a problem, e.g., a flash image of a material. These methods offer high quality,

but take long to train. We suggest to combine both techniques end-to-end using

meta-learning: We over-fit onto a single problem instance in an inner loop, while

Textures
Speedup: 342.5x

stat. svBRDFs
Speedup: 348.0x

svBRDFs
Speedup: 384.6x

Illumination
Speedup: 347.9x

BDRFs
Speedup: 4554.9x

Light transport
Speedup: 745.3x

O
ur

s
O

ve
rf

it

Figure 3.1: We propose meta-learning for a wide range of appearance reproduction tasks.
Given as few as 10 optimization steps, our method (top in each subfigure)
achieves quality comparable to overfit-approaches (bottom in each subfigure)
that take orders of magnitude more training iterations.

3.1. Introduction 52

also learning how to do so efficiently in an outer-loop across many exemplars. To

this end, we derive the required formalism that allows applying meta-learning to a

wide range of visual appearance reproduction problems: textures, BRDFs, svBRDFs,

illumination or the entire light transport of a scene. The effects of meta-learning

parameters on several different aspects of visual appearance are analyzed in our

framework, and specific guidance for different tasks is provided. Metappearance

enables visual quality that is similar to over-fit approaches in only a fraction of their

runtime while keeping the adaptivity of general models.

3.1 Introduction

Reproduction of visual appearance [55] is a key part of Computer Graphics that has

achieved new levels of simplicity, speed and accuracy thanks to recent developments

in ML. The classic use of ML for appearance reproduction was to capture light

or materials from very little input, sometimes only single images [50; 84], without

access to ground truth maps. Approaches that are capable thereof usually train for a

long time on large datasets and achieve impressive levels of generalization, often due

to CNNs that recognize patterns in the data. Unfortunately, this generality comes at

the price of not matching the target precisely: we might get a great looking BRDF or

svBRDF from a single image, but it might not exactly match the input.

More recently, a second line of research has evolved, where no attempt is made

to generalize over a large dataset, and, instead, non-linear optimization and differen-

tiable rendering are used to explain visual appearance in input images [82; 193; 249].

These methods minutely match the reference, but need many input observations,

take long to train and can be slow to execute. Typically, such approaches use

point-operations, e.g., MLPs, rather than CNNs.

A first step to combine these two training paradigms was introduced by adapting

the output of a model from the general class in a second, non-end-to-end step, the

so-called fine-tuning or post-refinement stage [52; 108; 78; 95]. Approaches that

use fine-tuning usually run an additional number of gradient steps (in the order of

magnitude 103) towards a specific target, which greatly improves reconstruction

3.1. Introduction 53

quality, but inflates runtime to the order of minutes, whereas feed-forward CNNs

operate in milliseconds.

A dilemma materializes: Should one rather make a user wait in order to provide

them with high quality output, or would it be better to provide fast, interactive results

that might be of inferior quality? Both solutions are unsatisfactory, which is why

in this work, we aim to diminish this quality-speed-gap and provide quality that is

a) close to model-overfitting or fine-tuning, and b) available at interactive runtimes,

close to those of general feed-forward networks.

We achieve this by harnessing the power of meta-learning: building on the

MAML algorithm [63] from the machine learning community, our framework Metap-

pearance uses two nested optimization loops, where the outer loop is sequentially

presented with all exemplars in a (training) dataset. For each exemplar, the inner loop

is then tasked with over-fitting a model onto this specific exemplar. Characteristically,

the inner loop operates under the constraint of a very limited number of available

gradient descent steps, typically around 10 only. Metappearance hence learns to

efficiently drive the inner optimization towards a specific target, but still is able to

exploit coherency and priors in the data due to knowledge gathered in the outer loop.

In this chapter, we present a framework that formalizes the application of meta-

learning to the task of visual appearance reproduction. Importantly, we do not

propose new visual appearance methods or new loss functions, nor do we compare

methods or analyze their properties. In fact, quite the contrary: we keep the methods

the same, but instead propose a different way of training them. By comparing our ap-

proach against “traditional” training paradigms, we show which types of applications

can benefit from meta-learning and explore the implications on performance and

quality. We validate that Metappearance outperforms general inference followed by

fine-tuning through ablation- and convergence-studies. Additionally, we, for the first

time in the graphics literature, make the connection between meta-learning, model

compression and data efficiency. We show that Metappearance speeds up faithful

appearance reproduction by several orders of magnitude, while keeping all desirable

properties of the respective base approaches and similar visual quality.

3.2. Previous Work 54

In summary, our contributions are

• Metappearance1, a model that adapts to new, unseen visual appearance tasks

in only a few steps of gradient descent.

• Optimizing for a fast and accurate optimizer of this model.

• Instances of this model that accurately match texture, BRDFs, svBRDFs,

illumination, or light transport orders of magnitude faster than strong baselines,

at comparable quality, and

• An analysis of our method’s properties, its convergence and its behaviour

under ablation.

3.2 Previous Work

3.2.1 Visual Appearance

We consider visual appearance reproduction, the task of generating plausible and

accurate visual patterns across all positions and orientations from evidence captured

for some angles and locations.

Ignoring angle and considering an exemplar’s statistics, we would talk about

appearance as texture [138; 60; 82]. When angle matters, we would call this bi-

directional reflectance distribution function (BRDF) [210; 91] and when both space

and orientation are considered, spatially-varying BRDF (svBRDF) [43]. Guarn-

era et al. [91] summarize these approaches. Textures [302; 82], BRDFs [84] and

svBRDFs [50] have all been acquired and represented by means of ML, for which

Tewari et al. [297] provide a survey. We defer discussion of the specific existing

solutions for all those sub-problems to Sec. 3.4.1.

3.2.2 Learning

More important to our problem is how the different methods are trained, i.e., opti-

mized, given either the information of a single instance or an entire set of exemplars

(Tab. 3.1).
1The code is available at https://github.com/mfischer-ucl/metappearance.

https://github.com/mfischer-ucl/metappearance.

3.2. Previous Work 55

Table 3.1: Different ways to optimize for visual appearance reproduction. We acknowledge
that encoding visual appearance in neural networks comes at the cost of editability
(rightmost column).

General Fast Accurate Compact Editable

General ✓ ✓ ✕ ✕ ✕

Overfit ✕ ✕ ✓ ✓ ✕

Finetune ✕ ✕ ✓ ✕ ✕

Meta (ours) ✓ ✓ ✓ ✓ ✕

General Learning A typical paradigm is to collect a training dataset, say, 2D images,

to curate them with appearance supervision, e.g., BRDF parameters, and to learn

a mapping from the image to those parameters, for example through a CNN [84].

Often, such methods create a latent space. While it is a strength that this space will

mostly contain valid exemplars, it comes at the expense of a bottleneck, reducing

specific details. In simple words, a 100-dimensional latent space can ensure every

latent code is a grass texture, but it cannot represent the exact location of 200 grass

blades. Examples of such approaches include work by Henzler et al. [107] (texture),

Georgoulis et al. [84] (BRDF) or Deschaintre et al. [50]; Kuznetsov et al. [154]; Gao

et al. [78]; Guo et al. [95] (svBRDF) or Zhu et al. [337, 338]; Bako et al. [9]; Huo

et al. [127] (light paths). These methods generalize well to new data, but do not

exactly match the test-time input, and hence are general and fast, but not accurate,

as per the taxonomy established in Tab. 3.1. Moreover, they often require an encoder-

and decoder branch, which makes them not compact. We call these General and

formalize them in Sec. 3.3.2.

Over-fit Optimization A second, more classical approach is to not seek generaliza-

tion, but to fit a model to samples of a specific problem instance. This technique

has seen a recent increase in popularity due to the emergence of coordinate-based

neural representations, and often is used in conjunction with MLPs. Examples are

numerous and include most works related to neural radiance fields (NeRF) [193] as

well as others for texture [155], BRDFs [293], svBRDFs [334] or the entire light

transport [335; 200]. We call these methods Overfit and define them in Sec. 3.3.3.

Most Overfit approaches are accurate and compact (they usually do not require

3.2. Previous Work 56

an encoder, as they do not need to generalize), but neither fast to train nor general.

Fine-tuning A combination of above approaches is sometimes used, where first a

general network is trained and then, when the target instance is known, is optimized

a second time [52; 108]. Some have employed optimization in latent space [294]

while keeping the rest of the network fixed [141; 142; 78; 95], or in pixel space

after a user-adjusted number of iterations, aiming to fit the target perfectly. We

here name these Finetune and define them in detail in Sec. 3.3.4. Approaches

that use fine-tuning or post-optimization usually are accurate, but neither fast (post-

refinement usually happens at non-interactive runtimes) nor general (once the model

is fine-tuned, it cannot be used for general inference anymore). Most fine-tuning

models are compact, as it is usually enough to store the fine-tuned decoder and the

corresponding latent code ([108]), although this is not always the case ([52].

Hyper- and meta-learning Hyper-networks produce weights of another network

[97]. This has been applied to appearance [190; 24], BRDFs [293] and NeRF-like

representations [279]. Meta-learning, instead, does not directly produce the parame-

ters of another network, but guides the optimization that drives the inner learning.

This optimization is often based on gradient descent, so the outer optimization pro-

duces setting such as start values and step sizes. Sometimes, the gradient rule itself

is learned [2; 253]. Applications of meta-learning were proposed for geometry [280],

super-resolution [120] and animation [312], layered depth images [74], as well as

for NeRF by Bergman et al. [21] and Tancik et al. [296].

Approaches that use meta-learning are fast and general by construction, as they

can run inference on new, unseen samples in only a few gradient steps. As we will

show in this work, meta-learning for visual appearance reproduction is also accurate,

as its output is close to overfit- or fine-tuning quality. Moreover, meta-learning

enables compactness, as the model initialization and optimization themselves are

learned, and hence do not need to rely on latent codes produced by, e.g., bulky

encoder networks. We would not be aware of work attempting to model visual

appearance using meta-learning, as we set out to do in Sec. 3.3.5.

3.3. Our Approach 57

3.3 Our Approach
After introducing the problem we solve (Sec. 3.3.1), we provide a common formal-

ization of three previous solutions (Sec. 3.3.2, Sec. 3.3.3 and Sec. 3.3.4), and finally

introduce Metappearance (Sec. 3.3.5).

3.3.1 Problem statement

We now discuss representing visual appearance, its parametrization, and finally its

optimization.

Representation We represent visual appearance as Lθ (x|I), a radiance function of a

positional-directional coordinate x, conditioned on input I and parametrized by the

tunable vector θ . The coordinate x can be two-, three- or higher-dimensional and

might be positional, directional or both. The condition I varies per application and

could be a single image, sparse measurements or light paths.

Parametrization Parameterizing Lθ by θ is possible in a large number of ways,

for instance through a plain, pixel-based RGB image, spatial data-structures, or a

more implicit representation, like a CNN or an MLP, and the parametrization might

make use of hard-coded, rendering-like operations. For now, we deliberately do not

specify this further and only require L to be differentiable w.r.t. the parameters θ .

Table 3.2 will give examples for instances of this model which we will evaluate in

our experiments.

Optimization Let us assume a scalar function LOSS(θ ,T) that is low if Lθ explains

the data T well (i.e., Lθ (xi|Ii) ≈ Li ∀ i ∈ T) and high otherwise. We will specify

different ways to define this loss, leading to different approaches of reproducing

visual appearance. Let us further assume that we have access to an optimizer function

LEARN(θ0,α,T,LOSS) which performs gradient descent (GD) that starts at θ0 to

change parameter θ with step size α so as to minimize the loss LOSS. This procedure

is given in Alg. 1, where nl is the number of GD iterations.

Combining LOSS and LEARN leads to different methods. In classic learning,

both the initialization and optimization step size are hyper-parameters chosen by the

user. We will see that Meta-learning chooses these optimally through optimization.

3.3. Our Approach 58

Algorithm 1 Classic learning: The function grad(·) differentiates its first argument
(an expression) with respect to the second.

1: procedure LEARN(θ0, α , T , LOSS)
2: θ = θ0
3: for i ∈ {1, . . . ,nl} do
4: θ -= α · grad(LOSS(θ ,T), θ)
5: end for
6: return θ

7: end procedure

3.3.2 General

General methods, that attempt to map a condition I directly to appearance, use the

loss described in Alg. 2:

LOSSGeneral(θ ,T) = Ei∈T [∆(Lθ (xi|Ii),Li)] (3.1)

where ∆(· , ·) here, and in the following, can refer to any norm. Visual appear-

ance problems usually are ambiguous: One Ii can typically be explained by more

than one parameter vector θ . Over the course of training, a General optimization

sees many different conditions Ii and hence can build priors about what solutions are

more likely than others. These priors are then used to generalize to new conditions

under new angles and positions, e.g., a new 2D photo of a sphere that can then

provide reflectance for new 3D angles and positions. However, the encoding of these

priors that then handle variations over I must be performed under the constraint of a

finite budget of parameters. In typical applications, this results in more or less subtle

forms of smoothing: a generated BRDF does not quite resemble the BRDF the input

specifies, some spatial details are lost in svBRDFs, etc. We will show examples of

this in Sec. 3.4.1.

3.3.3 Over-fitting

Differently, in over-fitting, the loss is

LOSSOverfit(θ ,T) = Ei∈T [∆(Lθ (xi|I),Li)] (3.2)

3.3. Our Approach 59

Algorithm 2 Classic loss. The function sample(·) takes a set as an argument and
returns a random index into that set.

1: procedure LOSS(θ , T)
2: cost = 0
3: for i ∈ {1, . . . ,b} do
4: j = sample(T)
5: cost += ∆(Lθ (x j|I j),L j)
6: end for
7: return cost/b
8: end procedure

where, importantly, I is constant and does not depend on i. This task is comparatively

easy, as the network only has to deal with one specific input. Consequently, results

are often of higher quality than in the General setting. However, the optimization

now lacks the synoptic approach that sees all instances and can use this “bigger

picture” to build priors and make do with fewer information in lower time. Typically,

over-fitting approaches need many iterations to train, take from minutes to hours to

converge, and often require further regularization, e.g., by physical constraints, to

avoid overfitting to specific training positions and directions.

3.3.4 Fine-tuning

Both overfitting and generalization can be combined in a trivial way: First run a

general method on the input, second, optimize the output so that it resembles the

input even more. Fine-tuning usually starts from initial parameters θ0, that have

been trained across many inputs (e.g., the converged state of a general model, as per

Sec. 3.3.2), and then optimizes these for a fixed target, as in over-fitting (Sec. 3.3.3),

with a fixed step size αF. This means to compute

LEARN(LEARN(θ0,αG,T,LOSSGeneral),αF,T,LOSSOverfit). (3.3)

While the general step can be re-used across several inputs, the subsequent fine-

tuning (essentially, over-fitting) optimization must be repeated for each new input.

Finetune is faster than Overfit, as only the inner optimization needs to be

executed for inference, while the outer step is a feed-forward network execution, and

3.3. Our Approach 60

sometimes is accelerated further by increasing the learning rate αF. Still, optimization

usually takes in the order of minutes, i.e., it is slow compared to a single feed-forward

execution of the general network that typically would take milliseconds. Moreover,

the solution might diverge from the priors that informed the first step. By jointly

training over both the general projection and the fine-tuning stage, we overcome

these issues in quality and speed, as explained next.

3.3.5 Meta-learning

A general model’s training is agnostic to the fact that later fine-tuning iterations

will be used to further improve the results. This drives the General projection

step towards learning unnecessarily detailed representations while missing other

important features and over-smoothing the space (see Sec. 3.3.2). The General

step hence will try to incorporate features that fine-tuning might include anyway, and

subsequently disregard other, more general elements that the fine-tuning operator

might miss.

If we do not know how to trade those properties, could we instead learn how to

do that? Could we learn how to perform an optimization optimally? To do that, we

need i) a domain to optimize over, ii) to understand what is “optimal”, and iii) an

actual algorithm. We will now look into these aspects.

As our optimization domain, we consider meta learning of both the initial

solution θ0 as well as a per-parameter step size α . Both the initialization and the

step sizes are fixed between tasks and stay constant at test time. We stack θ0 and α

into a meta parameter vector, denoted as φ = {θ0,α}. Meta learning can then be

formalized2 as a new loss (Alg. 3):

LOSSMeta(φ ,T) = Ei∈T [LOSSOverfit(LEARN(φ ,Ti,LOSSOverfit),Ti)]. (3.4)

The first thing to note is that the loss is defined on meta-parameters φ and that

it calls LEARN with these, to quantify how suitable they are for an inner learner.

Second, it samples from a space of tasks T which consists of multiple optimization

2In a slight abuse of notation, as LEARN takes four parameters, while it is called with three here,
where the first is a tuple holding the first two arguments, init and stepsize.

3.3. Our Approach 61

Init
Meta init Result 1

Result 2

Figure 3.2: Learning the init: Trajectories for Meta and Overfit for the example task of
BRDF representation. The dotted line denotes inner optimization. Note how
the dotted trajectories for Meta are shorter, i.e., faster learning.

tasks Ti, e.g., multiple BRDFs, instead of a single task. The sampled task T is the

same for meta-train and meta-test; the same for the call to LEARN and to LOSS.

Because sample inside the loss function is randomized, different positions and

directions are used for meta-test and meta-train. Doing so, parameters that generalize

across positions and directions inside one task are advantaged.

To actually perform meta-learning, we

LEARN(φ0,αM,T ,LOSSMeta),

i.e., perform common learning with an advanced loss and a meta-initialization, φ0,

as well as a meta step-size αM.

Algorithm 3 Meta-learning involves a loss that depends on the hyper-parameters of
calling the function LEARN on the actual task.

1: procedure METALOSS(φ , T)
2: cost = 0
3: for i ∈ {1, . . . ,b} do
4: j = sample (T)
5: cost += LOSS(LEARN(φ , T j, LOSS), T j)
6: end for
7: return cost/b
8: end procedure

By encouraging network parametrizations that enable few-step convergence on

unseen samples, meta-learning optimizes over optimization itself. More specifically,

in our scenario, the inner optimizer learns to over-fit to the appearance of one

3.3. Our Approach 62

A B C D E F

α1
α2 α3

θ

Lo
ss

Figure 3.3: Learning the step size: The orange and violet curve show the loss (vertical) for
different parameters θ (horizontal) for two BRDF tasks. The gray α-intervals
denote three alternative step sizes. The zig-zags are the convergence paths for
specific choices of step size. Please see the text for discussion.

exemplar. The outer optimizer then changes the inner optimizer’s start parameter

values, so that the next inner-loop execution will achieve improved results and do so

much quicker. Fig. 3.2 illustrates this idea with two very basic tasks. As with other

losses, the metaloss is computed across a batch, i.e., φ0 and αM are updated with

information averaged across multiple optimizations (the for loop in Line 3).

Fig. 3.3 illustrates the purpose of learning the step size. As explained in Fig. 3.2,

meta-learning will change the init from A to a suitable position E. When choosing

the step size right, (α2 for this init) the optimizer will converge to the correct BRDFs,

here C and F . With a step size too small, α3, or a step size too large, α1, we

converge to less suitable results (D or B, respectively) for the violet task. As the

above considerations might be different in higher dimensions, we parameterize the

step size as a vector instead of a scalar, which allows anisotropic gradient steps [172].

During meta-inference, i.e., when using the meta-trained model to quickly infer a

result for a new, unseen sample provided by a user, the step-sizes are fixed, and only

the model weights are changed.

Jointly learning the model initialization and the corresponding step sizes com-

bines the quality of over-fitting with the ability to build priors of general approaches.

In practice, the inner training loop takes several orders of magnitude fewer itera-

tions than common over-fitting and is up to two orders of magnitudes faster than

3.4. Evaluation 63

fine-tuning, which enables execution at interactive rates: in most applications, our

inference time is less than 1 second.

Implementation Our implementation follows the MAML framework proposed by

Finn et al. [63]. As the name suggests, the meta-learner is agnostic to the inner

network used, which makes the approach flexible and well-suited for our different

application scenarios. We learn our per-parameter stepsize (see Fig. 3.3) according to

the approach presented in Meta-SGD [172]. For details of the different meta-learning

algorithms and tools used, please see Appendix Sec. A.1.

3.4 Evaluation
We have introduced a framework for using meta-learning for visual appearance

reproduction, but how well does it compare to more traditional training approaches?

To answer this, we will now demonstrate the effectiveness of Metappearance on a

variety of different applications. We will now introduce those, including notes on

previous work and the architecture (Sec. 3.4.1), then outline the evaluation protocols

(Sec. 3.4.2), and, finally, report qualitative and quantitative results (Sec. 3.4.3).

3.4.1 Applications

We consider six increasingly complex applications (Table 3.2): i) RGB textures, ii)

BRDFs, iii) stationary and iv) non-stationary svBRDF maps from flash images, v)

illumination maps from RGB images with normals and finally vi) the entire light

transport in a scene.

Neither the tasks addressed nor architectures used are novel; the contribution

lies in the way they are trained. We re-iterate that it is hence not our goal to compare

different approaches (e.g., CNN vs. MLP for BRDF encoding), but rather compare

different methods of training a specific approach. We will detail each application

next.

Textures. In a TEXTURE, RGB appearance varies over space, but has uniform

visual feature statistics [240]. Gatys et al. [82] optimized for a finite image in pixel

space such that its VGG activation statistics match the exemplar, a solution that

would be Overfit in our taxonomy. Later, Ulyanov et al. [302] trained a single

3.4. Evaluation 64

CNN to perform this task feed-forward. Huang and Belongie [125] have shown how

control over (instance) normalization can produce new textures corresponding to a

General solution in the logic of this work. Henzler et al. [107] show how to do

this conditioned on an input image, optionally involving a step of Finetune. For a

comprehensive survey, we refer the reader to Raad et al. [247].

These methods are exemplary for the spectrum we challenge: either they take

long to learn and fit the input exactly, or they are fast and only approximate the

input. We study a design based on Ulyanov et al. [302] and Henzler et al. [107] as

per TEXTURE in Table 3.2. For the exact network and training setup, please confer

Appendix Sec. A.2.1.

BRDFs. While the RGB textures varied in space, but not in angle, we now look

into visual appearance varying with angle, but not over space, the classic BRDF

representation task. We use a network the learn the BRDF responses for given light-

and view-directions. Our experiments follow Sztrajman et al. [293] and Hu et al.

[119], who both use networks combined with custom parametrizations to encode the

MERL [189] BRDF database. Details on related work and the architectures used are

found in Appendix Sec. A.2.2.

Stationary svBRDFs. The next-higher level of complexity are stationary spatially

varying BRDFs (SVBRDFSTAT) that combine spatial and angular variation of

reflectance, as also surveyed by Guarnera et al. [91]. The theme recurs: optimization

is slow but matches the target well, while feed-forward networks are fast, but often

do not reproduce the target.

Specifically, we study estimating stationary svBRDFs from flash images, pio-

neered by Aittala et al. [3], denoted SVBRDFSTAT in Table 3.2. We look at a design

using a noise-conditioned encoder-decoder, as demonstrated in Henzler et al. [108].

We show re-lit results, parameter maps and all network details and training routines

in Appendix Sec. A.2.3.

Non-stationary svBRDFs. Besides stationary svBRDFs, we look into estimating

non-stationary ones (SVBRDFNONSTAT), also from flash images. This task was

explored by Deschaintre et al. [50] as well as Guo et al. [95] and Gao et al. [78] before.

3.4. Evaluation 65

They all combine learning with fine-tuning in different ways. While Deschaintre

et al. [52] use additional information and upsampling, Gao et al. [78] and Guo et al.

[95] optimize first in a latent space, and later in the pixel space given only the target

flash image.

We adapt the architecture from Deschaintre et al. [50], an encoder-decoder

with a re-rendering loss, trained supervised under L1 on synthetic flash images,

SVBRDFNONSTAT from Table 3.2. For testing, both the reference as well as

the inferred results are rendered from a set of novel view and light directions and

compared.

Illumination. While the previous applications have looked into different forms

of reflectance, another important application for visual appearance is estimating

ILLUMINATION. To study the relation to meta-learning, we consider the task of

representing natural spherical illumination itself as a NN. In particular, we consider

an encoder-decoder that takes as input a diffuse shaded low-dynamic range (LDR)

image of a sphere and outputs the high-dynamic range (HDR) environment map.

Training data is rendered using the Laval HDR environment map dataset [79] to

illuminate spheres of random materials. For evaluation, we render a second scene

under the reference- as well as the inferred illumination and compare both results.

Details are found in Appendix Sec. A.2.5.

Light transport. The ultimate explanation for visual appearance is the light transport

in a scene itself [304]. To this day, robust handling of all forms of light transport

remains a challenge [146]. One important building block that recently received a

lot of attention is the guidance of paths [156; 309; 199; 200; 109; 335; 338], where

previous paths build a model (parametric or NN-based) that is then used to steer

path generation towards relevant paths that reduce variance more effectively. As

this strategy involves optimization, it can also be meta-learned, so as to transfering

understanding of light transport across scenes.

To do so, we study the architecture of Zheng and Zwicker [335], which relies

on a normalizing flow [258] to learn a map from the unit hypercube to PSS, such

that path density matches the one of the target scene. In other words, the normalizing

3.4. Evaluation 66

Table 3.2: Overview of all appearance reproduction applications we consider. Below, “ED”
denotes encoder-decoder, “NF” is normalizing flow, “PN” is a Point-Net.

Application Input I Output Lθ Domain xi Architecture θ Metric Source

TEXTURE RGB image Infinite RGB map 2D Pos ED CNN+Noise VGG Gram L1 Ulyanov et al. [302]
BRDF Angle pair RGB reflectance 4D Dir CNN+MLP L1 Sztrajman et al. [293]
SVBRDFSTAT Flash image Infinite BRDF map 2D Pos, 4D Dir ED CNN+Noise VGG Gram L1 Henzler et al. [108]
SVBRDFNONSTAT Flash image Finite BRDF map 2D Pos, 4D Dir ED CNN Re-render L1 Deschaintre et al. [50]
ILLUMINATION RGBN image RGB HDR Envmap 2D Dir ED CNN Re-render L1 Georgoulis et al. [83]
TRANSPORT PSS sample Light path + prob. n-D Pos/Dir PN MLP+NF NLL Zheng and Zwicker [335]

flow learns a scene-dependent PSS warp that is then applied to random PSS samples.

Once trained, the model can be used to generate new paths as well as their probability.

For details on architecture and training, please see Appendix Sec. A.2.6.

While previously these methods were applied to a single scene, we consider

an entire set of scenes. To study this, we use a Cornell-box like configuration that

is populated by a random number of between 1 and 5 spheres of random diffuse,

glass or metal materials in random positions, a mirror that is randomly placed at a

sidewall, and an area light positioned randomly on the ceiling. To quantify success,

we measure the negative log-likelihood (NLL) across the test-set, as is done in [335],

as using image-based metrics to quantify training error would require rendering the

entire test-set per training epoch and method, which is computationally intractable.

If the model matches the scene-dependent radiance distribution well, i.e., it correctly

adapts to the light transport within the scene, the resulting NLL will be low. We

report image-space metrics with the trained models for an equal number of rays in

Tab. 3.4.

3.4.2 Methodology

Protocol We compare our method against the approaches listed in Sec. 3.3. The

protocol is as follows: Let I denote the entire training data set, e.g., all BRDF

samples in the MERL database. For Overfit, we sample a single input I from

I and train a network on I, and only I, until convergence. General denotes a

network that has been trained on all elements in I and then is conditioned on the

particular I we want inference for. Finetune applies a pre-defined number of

n fine-tuning steps to the output of General to further improve the result for a

particular I. Finally, our proposed Meta-learning is trained on all tasks in I, but

3.4. Evaluation 67

under the constraint of being given only a fixed budget of nl gradient descent steps,

with nl << n. At inference time, a model conditioned on a particular I can then

quickly be instantiated by updating the initial meta-model parameters nl times.

Timing All experiments report inference time, i.e., the time elapsed between first

presenting an input to the network and receiving its final output. We refrain from

reporting render- or path-tracing times, as these do not change across methods.

Please note that for Meta, inference time is different from (meta-) training time:

meta-inference is quick, as we only need to perform a small number of gradient

steps and do not need to calculate costly higher-order derivatives. We report this

figure, as this is what a user would experience when presenting new, unseen inputs

to one of our meta-trained applications. During meta-training, however, the opposite

is true: we often need to backpropagate though the gradient operator itself, and do

so for many examples. This leads to long meta-training times: Meta trains roughly

twice as long as General. For a more detailed listing of training times, we refer to

Appendix Tab. A.1. Note that for inference, the speed and memory consumption of

the deployed NN is unaffected by meta-learning.

Metrics We evaluate each method on unseen input from the test set, with the particu-

lar evaluation metric depending on the application (column “Metric” in Table 3.2). In

particular, meta-learning does not “cheat” by disclosing any test data during training;

the split is the same as in conventional training. This means that Meta is presented

with entirely new tasks (e.g., a completely unseen BRDF) instead of just withheld

samples from a previously processed task (Appendix Fig. A.1visualizes this).

3.4.3 Results

We summarize quantitative results in Tab. 3.3. We consistently show lower compute

time than Finetune and Overfit at only slightly reduced quality. The speed-

quality plots (Tab. 3.3, a) show that our method is not just a compromise between the

speed of General and the quality of Overfit, but instead is located much closer

to the ideal range (top right corner) than all other methods. We will now discuss

each application’s results in turn.

Textures. Tab. 3.3 b) shows distribution of error across the texture task for all

3.4. Evaluation 68

Table 3.3: Quantitative results for all methods on all applications. The first row of plots
shows the quality-speed continuum spanned by the four methods, with the ideal
range (fast inference and high quality) being in the top right corner. The second
row shows test-set error, individually sorted for each method. The third row
shows convergence plots at inference time. Note that very different time-scales
are plotted on the same horizontal range, so comparison can only be made in
shape, not between fixed values at any point in time.

TEXTURE BRDF SVBRDFSTAT SVBRDFNONSTAT ILLUMINATION TRANSPORT

Sp
ee

d

Quality0.4 1
.0001

1

Quality Quality Quality0.1 1 0.2 1 1
.0001

1

.001

1

.0001

1

.0001

1

.01

1

Quality0.4 1 Quality0.4 1 0.8

Time ×1,×10,×100 Time ×1,×10,×100 Time ×1,×10,×100 Time ×1,×10,×100 Time ×1,×10,×100 Time ×1,×10,×100

Er
ro

r

Lo
g

Er
ro

r

Er
ro

r

Index Index Index Index Index Index
0

2

Er
ro

r

0

0.04

0

2

0

0.25

.0005

.05

Lo
g

er
ro

r

-6

0

Er
ro

r

a)

b)

c)

0

1

0.5

2

0.2

2

0.1

1

0.1

10

-10

10

Error Time Error Time Error Time Error Time Error Time Error Time

General 0.522 0.022 1.892 0.005 0.436 0.201 0.540 0.040 6.536 0.002 -3.457 0.040
Overfit 0.183 212.421 0.631 141.201 0.229 516.515 0.099 182.292 0.168 133.583 -4.120 362.210
Finetune 0.201 21.210 0.654 9.972 0.256 103.675 0.141 57.221 0.313 26.812 -4.030 42.070
Meta 0.252 0.619 0.720 0.031 0.311 1.484 0.197 0.474 0.352 0.384 -3.970 0.486

exemplars. We see that while both General and Meta struggle more with some

specific (not necessarily the same) problem cases, the result is not dominated by

outliers. The progress of training is seen in Tab. 3.3, c) where Meta achieves a

quality more similar to Finetune than to General, but in a fraction of the time.

Fig. 3.4 shows qualitative results that further confirm these quantitative findings.

General often projects the unseen textures into the latent space only approxi-

mately, which results in subtle but noticeable differences in features, color and scale.

Finetune and Overfit both almost perfectly replicate the original, as both meth-

ods conduct a complete optimization run on the current sample. Our Meta-method

faithfully replicates all textures with only minor differences in style. For more results,

please see Appendix A.

BRDFs. Our Meta-method achieves high fidelity reproduction results across all

BRDFs in the MERL-database, as quantified in Tab. 3.3. When rendered under

Paul Debevec’s St. Peter’s Basilica illumination, Meta achieves structural similarity

3.4. Evaluation 69

General MetaFinetuneOverfit Reference

0.02s 0.62s21.21s212.42s

Figure 3.4: Results across the test set for the TEXTURE application. Every result is condi-
tioned on a random process, so not meant to be compared pixel-by-pixel. We
report inference time to the respective result.

(SSIM) values of ≥ 0.95 on 99% of all materials. For a visual comparison of the

reproduction results of the different approaches, see Fig. 3.5: Our method picks up

fine nuances in the BRDF correctly, and we consistently show large improvements

over General. In some cases, Meta even outperform methods Finetune and

Overfit, which both have a time budget several orders of magnitudes larger than

our method.

Stationary svBRDFs. We detail quantitative results in Tab. 3.3 and show qualitative

results in Fig. 3.6. This application again confirms our previous findings: General

is fast, but fails to match the input accurately. This becomes evident in Fig. 3.6,

where General broadly matches the target, but is missing fine details and has

slightly tinted colors (top and bottom row) or washed-out highlights (middle rows).

Both Finetune and Overfit match the target well and pick up subtle details

3.4. Evaluation 70

General MetaFinetuneOverfit Reference

0.998 / 0.03s0.999 / 141s0.990 / 0.01s 0.999 / 13.3s

0.931 / 141s 0.967 / 0.03s0.922 / 0.01s 0.965 / 13.3s

Figure 3.5: Rendered results for unseen BRDFs from the test-set, trained with the different
methods. The insets quantify SSIM and inference time.

such as the wood grain and shading cues correctly, but take long to converge.

Our Meta-method achieves similar visual quality in a fraction of their runtime

and manages to produce correct svBRDF maps in just over a second. We believe

that a reason for this is the combination of strong priors built during meta-training

(for an example, we refer to Fig. 3.11, left column) and learning how to adapt them

optimally. While the quality-speed improvement is still significant, the gain from

using Meta here is comparatively small, as seen from the position of the red-dot in

the quality-speed continuum.

Non-stationary svBDRFs. Qualitative results for non-stationary svBRDFs are

shown in Fig. 3.7. We see that General is producing highlights not present in

optimization-based training schemes, including ours. Out of those optimization-

based methods, ours is several orders of magnitude faster, as seen in the numbers

and the speed-quality plot in Tab. 3.3, column “svBRDFNonStat”. Both Finetune

and Overfit perform well, although the visual comparison in Fig. 3.7 shows

Finetune to perform slightly better. We presume that this is due to the fact that

Finetune benefits from the priors developed by General (recall, fine-tuning

starts at the output of the general model), whereas Overfit starts the training from

scratch. In heavily ill-posed tasks like svBRDF estimation, the importance of solid

priors has been shown to be of great importance for the optimization [95; 78]. This

is also part of the explanation for Meta’s success on this task, as it can build priors

3.4. Evaluation 71

General Overfit ReferenceMetaFinetune

0.2s 516.5s 1.49s103.7s

Figure 3.6: Results across the SVBRDFSTAT test-set. Note that every result is a realization
of a random process, so not meant to be compared pixel-by-pixel. For re-lit
renderings and shading maps, see Appendix A.

over the dataset in the outer loop and perform a quick overfit-optimization in the

inner loop without diverging too far.

Illumination. We present results for our ILLUMINATION task in Fig. 3.8, where

we render the inferred envmaps on a scene with a specular and diffuse object. We

compare all methods against a reference image of that same scene rendered under

the groundtruth illumination. We note how General is able to place sharp shadows

(indicating it handles HDR well) but does not manage to exactly match the intensity.

Similarly, reflections look plausible, but do not match the reference. Optimization-

based methods meet this requirement, but only our meta-trained approach is orders

of magnitude faster and achieves comparable quality. This is confirmed by the

quality-speed plots in Tab. 3.3, where Meta is far-right, indicating that quality is

very close to the full optimization-based methods. Tab. 3.3, c shows, that Meta

3.4. Evaluation 72

General MetaFinetuneOverfit Reference

0.04s 0.47s57.22s192.29s
Figure 3.7: Relighting results across the test-set for the SVBRDFNONSTAT task. We render

the resulting parameter maps under a different view- and light angle. For more
results and the parameter maps, see Appendix A.

converges even faster than for other tasks (the red curve is more concave). From the

distribution in Tab. 3.3, b we see that the classic optimization-based methods have

no problematic outliers, a property retained by Meta.

General MetaFinetuneOverfit Reference

4.61 / 0.002s 0.24 / 26.8s 0.71 / 0.384s0.19 / 133.6s

5.76 / 0.002s 0.29 / 26.8s 0.81 / 0.384s0.21 / 133.6s

Figure 3.8: Results for an unseen instance from the ILLUMINATION test-set, inferred from a
single RGB image (not shown) and used to render a novel scene (left). Quality
of illumination is most revealed in reflections (top) and cast shadow (bottom).
The sharpness and shape of the shadows is very indicative of the high dynamic
range of the regressed envmap. We report MAE ×102 and inference time. For
direct visualization of the envmaps, see Appendix A.

3.4. Evaluation 73

Light transport. We show the outcome for TRANSPORT in Fig. 3.9. Recall that

TRANSPORT uses a resampling of a scene’s radiance distribution to learn a model that

is used for importance sampling that particular scene. To compare the effectiveness of

each approach, we render a novel scene (unobserved during training for General

and during meta-training for Meta) using samples generated by the respective

importance-sampling model. We further include an additional baseline, Regular,

for this application. Regular uses importance-sampling for the geometric term and

randomly samples outgoing paths from the hemisphere oriented around the normal.

All subfigures are rendered with the same number of samples (4096) and very similar

compute time, as querying the importance model can be parallelized on the GPU

and hence is fast compared to the tracing of rays (milliseconds vs. minutes). As

elaborated earlier (see Sec. 3.4.1), we report the time between model instantiation

and the final training step (i.e., when it is ready to produce light path samples) as this

is the part that the choice of training scheme can influence, whereas the subsequent

path-tracing time is approximately invariant3 to the origin of the samples. For a

comparison of ray-generation and -tracing times, see Appendix Tab. A.4.

Quantitative results are seen in Tab. 3.3, column TRANSPORT: Meta is again

closest to the top-right corner, indicating that it combines the quality of Overfit

and the speed of General. The qualitative outcome (Fig. 3.9) indicates that

all methods successfully reduce variance w.r.t. the Regular baseline. Again,

General performs slightly below the iterative optimization-based methods Meta

is orders of magnitude faster. To quantify how well the instantiated models perform

in image space, we rendered the entire test-set with light paths produced by the

respective importance model and a fixed sampling budget of 1024 rays per pixel.

We display common metrics calculated on these renderings in Tab. 3.4. The results

confirm the qualitative inspection in Fig. 3.9 and show that Meta again is much

closer to Overfit and Finetune than to the general or regular baseline. For

details on the sampling and rendering operations, we refer to Appendix Sec. A.2.6.

3We write approximately as the PSS samples created by all trained methods are created in Python
and must be passed to the C++ renderer, which incurs a time overhead that the Regular baseline
does not suffer. However, this is in the order of milliseconds, and hence can be neglected.

3.5. Analysis 74

Table 3.4: Mean absolute percentage error and structural dissimilarity (DSSIM) across the
TRANSPORT test-set. Lower is better for both metrics.

Regular General Overfit Finetune Meta

MAPE 0.516 0.471 0.405 0.409 0.422
DSSIM 0.546 0.479 0.418 0.425 0.430

Please note that we explicitly refrain from discussing which method of impor-

tance sampling or path guiding is most appropriate for practical applications and

re-iterate that we compare ways of training approaches instead of directly compar-

ing the performance of different approaches. We here introduce meta-learning to

the importance-sampling and rendering community as a first proof of concept and

show that a meta-importance-sampler can generalize across a distribution of Cornell

box-like scenes with practical benefits. To our knowledge, this is the first application

of meta-learning in rendering, and the first presentation of meta-learned normalizing

flows.

General MetaFinetuneOverfit ReferenceRegular

6.466 4.849 / 0.04s 3.652 / 362.2s 3.302 / 42.1s 3.796 / 0.49s

5.410 3.465 / 0.04s 2.991 / 362.2s 2.398 / 42.1s 2.934 / 0.49s

Figure 3.9: Results for an unseen test-scene for the TRANSPORT application. The left image
is rendered with 240,000spp to guarantee a noise-free reference. The images
to the right are produced by rendering the reference scene with PSS samples
produced by our different approaches (equal number of samples, i.e., equal
rendering time). We report symmetric mean absolute percentage error (SMAPE)
and the respective model inference time.

3.5 Analysis
As the previous section has shown, Meta achieves similar quality than optimization-

based approaches that take orders of magnitude more training time. To analyze the

inner workings of Metappearance, we will next discuss a range of further properties

that can be deduced from our experiments: We will ablate our learned components

3.5. Analysis 75

a) Overfitd)c) Referenceb)

Figure 3.10: We compare the influence of a learned learning rate (column b) and initializa-
tion (column c). See the main text for details.

(Sec. 3.5.1), look at convergence of the inner and outer loop (Sec. 3.5.2), explain

how Metappearance can be interpreted as model compression and finally discuss

how Meta can make do with much fewer input observations (Sec. 3.5.3).

3.5.1 Ablations

We meta-learn two hyper-parameters: step size and inititalization, but which of them

actually contributes to the success? Fig. 3.10 looks into this question. In column

a), we display the output of General. In column b), we take this as starting point

and use our learned step size to perform nl = 20 “smart” gradient steps towards

the reference. Evidently, this leads to inferior results, as the general model has

been trained with a fixed, global learning rate, and hence does not know how to

account for a per-parameter learning rate. In column c), we use our meta-learned

initialization to perform nl = 20 steps of conventional Adam optimization (learning

rate multiplied by 10 for faster convergence) towards the reference. This again leads

to poor results, as our learned initialization normally is adapted through large, non-

uniform gradient steps. During meta-training, the initialization was hence moved to

a region of the objective space that is approximately equally well-suited for all tasks,

but not necessarily easy to navigate with uniform gradient steps. Column d) finally

shows the output of our Meta-method, where learned initialization and step size are

used in combination. Evidently, this outperforms all alternative configurations.

This decay in reproduction quality shows that meta-learning really combines

the best of both worlds: By optimizing for optimization directly, the outer optimizer

3.5. Analysis 76

can discover gradient paths that lead to local minima by not only moving the network

weights (as would General), but also the step-size with which these weights are

updated for a certain number of iterations (as in Finetune).

It is tempting to argument that optimizing over optimization itself, e.g., learning

the step size, automates time-consuming hyperparameter searches. While this is

true to a certain extent, one still must choose the meta-hyperparameters, e.g., outer

loop learning rate, etc. All our experiments use very similar hyper-parameters (see

Appendix Sec. A.1) that were not particularly tuned, but this might be different in

different applications or designs (cf. [8]).

3.5.2 Convergence

In Fig. 3.11, we show the convergence of our meta-learned initialization (leftmost

column) towards different targets. All intermediate outputs show realistic appearance,

and even the meta-initialization could pass as a problem instance (e.g., a texture) on

its own. Throughout optimization, our method does not introduce unwanted artifacts,

even for the ambiguous single-image svBRDF estimation task.

For maximal quality, we can fine-tune a converged Meta model for an addi-

tional number of training steps. We explicitly refrained from doing so in our main

experiments, as this defies the purpose of Metappearance (achieving high quality

without fine-tuning). However, Meta will converge to a loss difference of less than

1 % relative to Overfit in only 65 additional training steps (less than 5 seconds

on every application). Related, General will not improve from further general

training and has been trained to saturation already.

However, it is not our objective to claim superior quality for infinite time and

compute resources. Instead, let us consider what often is the case in applications

that involve user interaction: operating under the constraint of a finite time budget.

Imagine, for instance, an architect wanting to quickly add a real-world svBRDF

to his 3D model; imagine an app instantaneously adding a customized deep visual

appearance model to a Tik-Tok video. The results of these applications must not

only be highly accurate, but also available within split seconds to keep the user

engaged, and no other method comes close to ours in this quality-speed trade-off.

3.5. Analysis 77

Meta-Init ReferenceFinal

0.10s 0.20s 0.31s 0.39s

0.13s 0.25s 0.38s 0.47s

0.12s 0.24s 0.36s 0.49s

0.37s 0.74s 1.11s 1.49s

0.009s 0.016s 0.025s 0.031s

0.19s 0.31s 0.49s 0.62s

Figure 3.11: Convergence on unseen test-tasks from the meta-init (left) to different targets
(right) for our different applications. We report wall-clock inference time and
results after approx. 25%, 50% and 75% (columns 2 - 5) of the inner-loop steps.
Note that the init itself is a plausible instance and enables the optimization
to “branch” to specific, very different goals. The result for TRANSPORT is an
equal-spp rendering with the inferred importance model. Note how the noise
clears with more meta-iterations although the sample count stays the same.

We hence claim highest quality under the constraint of limited time, and additionally

investigate an equal-time comparison between Finetune and Meta, where both

approaches are allowed to perform the same number of gradient steps nl that would

3.5. Analysis 78

Table 3.5: Average error across the respective application’s test-set for our QuickFinetune-
experiment. For the metrics reported, please see Table 3.2. For convenience, we
repeat results for methods General and Meta from Tab. 3.3.

nl General QuickFT Meta

TEXTURE 15 0.522 0.285 0.252
BRDF 10 1.892 1.346 0.720
SVBRDFSTAT 20 0.436 0.351 0.311
SVBRDFNONSTAT 15 0.540 0.289 0.197
ILLUMINATION 15 6.536 5.240 0.352
TRANSPORT 8 -3.457 -3.551 -3.970

normally be used during meta-inference. This effectively is a very quick fine-tuning

session, which is why we refer to it as “QuickFinetune”, or QuickFT4. QuickFT

uses Adam, for which we again increase the learning rate for faster convergence, as

we have done for almost all applications in our experiments (the QuickFT config

used here is the same as in Appendix Tab. A.1), while Meta uses both its learned

init and the learned stepsize.

As Tab. 3.5 shows, QuickFT already offers great gains over the general method

on some applications. However, it is outperformed by Meta on all applications. For

example-specific visualizations of this experiment, including equal-time comparisons

to Overfit, see Appendix Fig. A.8. This confirms that meta-learning is more

than mere general inference followed by fine-tuning and that optimizing over the

optimization procedure itself (recall, we learn how to overfit a sample efficiently)

really finds a non-trivial optimizer.

3.5.3 Compression and Efficiency

Storage. Our Meta-method can further be interpreted as a compression scheme.

Consider a rendering or 3D-modeling application, e.g., Blender, that loads a pre-

trained model’s weights to create new, diverse textures for surfaces. With methods

Overfit and Finetune, such an application would have to store an entire set

of weights per texture to be generated (note that, in such a scenario, storing the

4To be able to fine-tune, we need to run General once. We do not deduct this runtime from
QuickFT’s time budget, as this makes the comparison stronger and also usually is a rather fast
operation.

3.5. Analysis 79

fine-tuned decoder of method Finetune is sufficient), and then is restricted to

synthesizing the pre-learned texture exemplars. One could alternatively store the

heavy-weight general model, but then would either have to forego accurate high-

quality synthesis or fine-tune the result, which is unsatisfying and time-consuming,

respectively. With our proposed Meta-method, it is sufficient to store two sets of

weights only (the model’s weights, and the per-parameter learning rate) to achieve

high-quality, diverse texture synthesis in interactive runtime, i.e., in less than a

second.

Similar arguments can be made for all the applications we have presented in this

work. Let w denote the number of disk space required to store the model’s weights

in methods Overfit and Finetune (we omit General from this comparison

as we are concerned with high-quality results only). The total amount of storage

required for the efficient and exact synthesis of m textures then equals wm, i.e., one

set of weights per exemplar. Our Meta-method achieves similar-quality results with

constant storage requirement 2w (weights and per-parameter learning rate), and is

not limited to pre-trained or fine-tuned texture exemplars but instead can quickly

infer new, unseen exemplars with high fidelity. The compression factor our method

achieves hence is 2m−1, which, in the case of our exemplar texture application with

500 exemplars, equals 1 : 250.

We would furthermore like to point out that compression also is an inherent

property of using neural networks on certain problem instances. An NBRDF (a

BRDF encoded in a network [293]), for instance, has a significantly smaller memory

footprint than regular BRDFs (28 kB vs. 34.2 MB in the case of our Meta-NBRDF),

so we additionally compress the original BRDF with a factor of approx. 1 : 2000.

However, we do not claim credit for this as a property of our method, but rather of

the base approaches we meta-train. In fact, quite the contrary is true – our method

requires double the storage of a single network (model weights and per-parameter

learning rate). However, we believe Meta’s ability to quickly converge to unseen

tasks and the resulting, aforementioned compression arguments to outweigh this

moderate increase.

3.5. Analysis 80

Sample Efficiency. For methods that consume single data points, i.e., methods that

use an MLP, there is a further compression argument that can be made. To do so, we

would like to draw attention to the way Meta is trained.

Recall that in meta-learning, the inner loop performs a fixed (small) number

of gradient descent steps towards the reference. Naturally, as with most recent

optimization algorithms, Meta uses stochastic gradient descent, i.e., the inner-loop

gradients are not calculated per-sample or across all samples, but rather over a

randomly selected subset of all available samples. Evidently, as Meta only performs

nl inner loop steps, only nl batches of size b are sampled.

Naturally, this process repeats many times during meta-training and hence

eventually samples all data in a task (e.g., all samples in a BRDF). However, this is

not the case during meta-inference: Recall that for meta-inference, we merely run

nl gradient steps on a new, unseen task. Evidently, this leads to Meta seeing only

nl×b samples of a task, while all its competitors have access to all the samples in

a task – in the cases of Overfit and Finetune, even repeatedly. Nonetheless,

Meta delivers quality that is very close to its competitors that have seen all data.

This is no surprise: The ability to make do with scarce data is a core property

of meta-learning and has been amply explored in previous works [4; 63]. In Metap-

pearance, this property could be useful in a number of ways: Imagine, for instance, a

client-server architecture, where the server stores large amounts of data (e.g., a large

set of scene-dependent TRANSPORT radiance distributions), and the client stores

the neural representation that will be trained on samples of this data. In order to

train a model on a specific radiance distribution, the server would have to transfer

all of its samples to the client (let us ignore the considerable time cost of training

or fine-tuning a network on this data for a second). However, following the above

argument, we only need to transfer nl×b samples to infer a converged instance of

Meta, for which the inference time can really be neglected.

In summary, this higher efficiency leads to bandwidth savings of approx. 72.2%

for the TRANSPORT application (a full dataset is 288,000 samples, Meta consumes

only 8×10,000 = 80,000 samples). For the case of BRDF encoding, the resulting

3.6. Conclusion 81

reduction in needed data transmission is even more drastic: Meta takes nl =10 inner

loop steps with a batchsize of b = 512 and hence consumes 5,120 samples, whereas

a full MERL BRDF, as is needed by all other methods, consists of 180×90×90≈

1.46×106 samples. Meta hence achieves a bandwidth saving of 99.6%.

3.6 Conclusion
We have used meta-learning for efficient and accurate appearance-reproduction on a

variety of increasingly complex applications. Our model, Metappearance, provides

users with results that qualitatively compare well to other training schemes which

take orders of magnitude more training iterations or data. We have shown that

Metappearance generalizes not only across problem instances of a similar nature,

e.g., our variety of Cornell-box scenes, but can also be applied across applications. In

terms of implementation effort, the additional code relative to a solution that already

uses an existing optimization is small. In fact, as we have shown in Sec. 3.3.5,

re-phrasing the loss function is sufficient.

The main point of our experimentation is that while we cannot yet have both

perfect speed and perfect quality, we, in several cases, improve substantially over

a mere trade-off between the two, as seen from the red dot in Tab. 3.3, a), which

has moved much closer to the ideal top-right spot, where visual appearance repro-

duction aims to be. Directions for future research could include the application of

Metappearance to even more complex light-transport algorithms or its extension

to meta-learning the objective function or the sampling pattern itself, which would

enable even higher accuracy for visual appearance reproduction.

Chapter 4

Plateau-reduced Differentiable Path

Tracing

Abstract
Current differentiable renderers provide light transport gradients with respect to

arbitrary scene parameters. However, the mere existence of these gradients does

not guarantee useful update steps in an optimization. Instead, inverse rendering

might not converge due to inherent plateaus, i.e., regions of zero gradient, in the

objective function. We propose to alleviate this by convolving the high-dimensional

rendering function, that maps scene parameters to images, with an additional kernel

that blurs the parameter space. We describe two Monte Carlo estimators to compute

plateau-free gradients efficiently, i.e., with low variance, and show that these translate

into net-gains in optimization error and runtime performance. Our approach is a

straightforward extension to both black-box and differentiable renderers and enables

optimization of problems with intricate light transport, such as caustics or global

illumination, that existing differentiable renderers do not converge on. The code is

available at https://github.com/mfischer-ucl/prdpt.

4.1 Introduction
Regressing scene parameters like object position, materials or lighting from 2D

observations is a task of significant importance in graphics and vision, but also a

hard, ill-posed problem. When all rendering steps are differentiable, we can derive

https://github.com/mfischer-ucl/prdpt

4.1. Introduction 83

Initial Our MethodReference Path Tracer
Figure 4.1: Optimization results with a differentiable path tracer (we use Mitsuba 3 [219])

and our proposed method. The task is to rotate the coffee cup around its z-axis,
so that the handle moves right. Due to a plateau in the objective function (when
the handle is occluded by the cup), regular methods do not converge.

gradients of the final image w.r.t. the scene parameters. However, differentiating

through the discontinuous rendering operator is not straightforward due to, e.g.,

occlusion. The two main approaches to (differentiable) rendering are path tracing

and rasterization.

Physically-based path-tracing solves the rendering equation by computing a

MC estimate for each pixel. Unfortunately, MC is only compatible with modern

AD frameworks for the case of continuous integrands, e.g., color, but not for spatial

derivatives, i.e., gradients w.r.t. an object’s position. To alleviate this, Li et al.

[169] present re-sampling of silhouette edges and Loubet et al. [183] propose re-

parametrizing the integrand, enabling the optimization of primitive- or light positions.

For rasterization, differentiability is achieved by replacing discontinuous edge- and

z-tests with hand-crafted derivatives [182; 259; 179; 161]. The problem here is that

rasterization, by design, does not capture complex light transport effects, e.g., global

illumination, scattering or caustics.

Importantly, the mere existence of gradients is no guarantee that descending

along them will make an optimization converge [192]. There are surprisingly many

cases where they do not lead to a successful optimization, due to a plateau in the

objective function. An example is finding the orientation of the mug in Fig. 4.1:

As soon as the handle disappears behind the cup, no infinitesimally small rotation

change will result in a reduced loss. We have hence reached a plateau in the objective

function, i.e., a region of zero gradients. We propose a method to remove these

plateaus while still having complete, complex light transport.

4.2. Background 84

We take inspiration from differentiable rasterization literature [179; 259; 237;

161], where smoothing techniques are used to model the influence of faraway trian-

gles to the pixel at hand. For rasterization, this simple change has two effects: First,

it makes the edge- and z-tests continuous and hence differentiable, and second, in

passing (and, to our knowledge, much less studied), it also removes plateaus. In

this work, we hence aim to find a way to apply the same concept to complex light

transport. Therefore, instead of making the somewhat arbitrary choice of a fixed

smoothing function for edge- and depth-tests in differentiable rasterizers, we path-

trace an alternative, smooth version of the entire rendering equation (RE), which

we achieve by convolving the original RE with a smoothing kernel. This leads to

our proposed method, a lightweight extension to (differentiable) path tracers that

extends the infinitely-dimensional path integral to the product space of paths and

scene parameters. The resulting double integral can still be MC-solved efficiently, in

particular with variance reduction techniques we derive (importance sampling and

antithetic sampling).

4.2 Background

4.2.1 Rendering equation

According to the rendering equation [140; 304], the pixel P is defined as

P(θ) =
∫

Ω

f (x,θ)dx , (4.1)

an integral of the function f (x,θ) which models the scene and depends on scene

parameters θ ∈Θ, over all light paths x ∈Ω. In inverse rendering, we want to find

the parameters θ ∗ that best explain the pixels Pi in the reference image with

θ
∗ = argminθ ∑

i
L(Pi(θ)−Pi(θref)) , (4.2)

where L is the objective function and Pi(θref) are the target pixels created by the

(unknown) parameters θref. Consider the example setting displayed in Fig. 4.2, where

we are asked to optimize the 2D position of a circle so that its rendering matches the

4.2. Background 85

reference.

Reference a) b) c)

Figure 4.2: An example of a plateau in L:
starting the optimization of the cir-
cle’s position at a) will converge,
whereas b) and c) will not. In a)-
c), we show the reference dotted
for convenience.

Let θ0 be the initial circle’s posi-

tion. In this simple example, the op-

timization will converge if, and only if

the circle overlaps the reference, i.e., set-

ting a) in Fig. 4.2. The reason for this

is that the gradient then is non-zero (a

small change in θ is directly related to

a change in L) and points towards the reference. However, if there is no overlap

between the initial circle and the reference, as in Fig. 4.2 b), a gradient-based opti-

mizer will not be able to recover the true position θref. This is due to the fact that

there exists a plateau in the objective function (for a rigorous definition, see Jin

et al. [136]). To visualize this, consider a rendering where the circle is placed in the

top left corner, as in Fig. 4.2 c). The scalar produced by the objective function is

identical for both b) and c), as L measures the distance in image space. Therefore,

the change in L is zero almost everywhere, leading to zero gradients and to the

circle not moving towards the reference position. As we will see in Sec. 4.4, this is

surprisingly common in real applications.

Table 4.1: Rendering taxonomoy. See Sec. 4.2.2 and Sec. 4.2.3.

Rasterizer Path Tracer Ours

Differentiable ✓ ✓ ✓
Light Transport ✕ ✓ ✓
Plateau-free ✓ ✕ ✓

4.2.2 Path tracing

As there is no closed-form solution to Eq. 4.1, path tracing uses MC to estimate the

integral by sampling the integrand at random paths xi:

P̂≈ 1
N ∑

i
f (xi,θ) (4.3)

Gradients: We are interested in the partial derivatives of P with respect to the

4.2. Background 86

scene parameters θ , i.e.,

∂P
∂θ

=
∂

∂θ

∫
Ω

f (x,θ)dx =
∫

Ω

∂

∂θ
f (x,θ)dx . (4.4)

In order to make Eq. 4.4 compatible with automatic differentiation, Li et al.

[169] propose a re-sampling of silhouette edges and Loubet et al. [183] suggest

a re-parametrization of the integrand. Both approaches allow to MC-estimate the

gradient as

∂̂P
∂θ
≈ 1

N

N

∑
i

∂

∂θ
f (xi,θ) . (4.5)

This is now standard practice in modern differentiable rendering packages

[219; 169; 327; 330; 329], none of which attempt to actively resolve plateaus.

4.2.3 Rasterization

Rasterization solves a simplified version of the RE, where for every pixel, the light

path length is limited to one. It is often used in practical applications due to its

simplicity and efficiency, but lacks the ability to readily compute complex light

transport phenomena. Instead, rasterization projects the primitives to screen space

and then resolves occlusion. Both steps introduce jump discontinuities that, for

differentiation, require special treatment.

Gradients: In differentiable rasterization, both these operations therefore are

replaced with smooth functions. Loper and Black [182] approximate the spatial

gradients during the backward pass by finite differences. Early, Rhodin et al. [259],

often-used Liu et al. [179] and later Petersen et al. [236] replace the discontinuous

functions by soft approximations, e.g., primitive edges are smoothened by the Sig-

moid function. This results in a soft halfspace test that continuously changes w.r.t.

the distance from the triangle edge and hence leads to a differentiable objective.

Chen et al. [38] and Laine et al. [157] propose more efficient versions of this, while

Xing et al. [322] use an optimal-transport based loss function to resolve the problem.

However, most differentiable rasterizers make simplifying assumptions, e.g., con-

stant colors, the absence of shadows or reflections, and no illumination interaction

4.3. Plateau-free Gradients 87

between objects. Our formulation does not make such assumptions.

Plateaus: Choosing smoothing functions with infinite support (for instance, the

Sigmoid), implicitly resolves the plateau problem as well. Our method (Sec. 4.3)

draws inspiration from this concept of “differentiating through blurring”.

Shortcomings: Consider again Fig. 4.2 a), where the circle continuously influ-

ences the rendered image, resulting in a correct optimization outcome. For rasterizers,

it is easy to construct a case where this does not hold, by imagining the circle to

be the shadow of a sphere that is not seen in the image itself. The smoothed tri-

angles then do not influence the rendering (most differentiable rasterizers do not

even implement a shadow test [169; 237]) and can therefore not be used for gradient

computation. Analogue examples can be constructed for other forms of multi-bounce

light transport.

4.2.4 Other renderers

Other ways to render that are neither path tracing or rasterization exist, such as

differentiable volume rendering [301; 106; 194] or fitting NNs to achieve a differ-

entiable renderer [206; 111; 268; 281]. Also very specific forms of light transport,

such as shadows, were made differentiable [184]. Finally, some work focuses on

differentiable rendering of special primitives, such as points [128; 325], spheres

[178], signed distance fields [135; 307; 13] or combinations [40; 121]. While some

of these methods also blur the rendering equation and hence reduce plateaus, they

remain limited to simple light transport.

4.3 Plateau-free Gradients
Intuition: As differentiable rasterization (see Sec. 4.2.3) has established, the

blurring of primitive edges is a viable means for differentiation. But what if there is

no “primitive edge” in the first place, as we deal with general light paths instead of

simple triangles that are rasterized onto an image? The edge of a shadow, for instance,

is not optimizable itself, but the result of a combination of light position, reflection,

occlusion, etc. Therefore, to achieve an effect similar to that of differentiable

rasterizers, we would need a method that blurs the entire light path (instead of just

4.3. Plateau-free Gradients 88

Mug Rotation

Im
ag

e
M

SE

Figure 4.3: Optimizing the cup’s rotation in the hard (left, blue) and smooth (right, orange)
setting (note the blurred handle). The image-space loss landscape is displayed
on the right: blurring resolves the plateau.

primitive edges) over the parameter space θ . If this method used a blur kernel with

infinite support (e.g., a Gaussian distribution), the plateau in the objective would

vanish, as a small parameter change in any direction would induce a change in the

objective function.

Example: Let us consider Fig. 4.3, where we again want to optimize the cup’s

rotation around its z-axis to have the handle point to the right, a 1D problem. As

we have seen previously, using an image-based objective function leads to a plateau

when optimizing L in the “hard” setting, i.e., without blur (the blue line in the plot).

Blurring the cup’s rotation parameter, on the other hand, leads to θ continuously

influencing the value of the objective and therefore resolves the plateau (orange line

in the plot). Naturally, it is easy to descend along the gradient of the orange curve,

while the gradient is zero on the plateau of the blue curve.

4.3.1 The Plateau-free Rendering Equation

Formulation: We realize our blurring operation as a convolution of the rendering

equation (Eq. 4.1) with a blur kernel κ over the parameter space Θ:

Q(θ) = κ ⋆P(θ) =
∫

Θ

κ(τ)
∫

Ω

f (x,θ − τ)dxdτ

=
∫

Θ×Ω

κ(τ) f (x,θ − τ)dxdτ . (4.6)

The kernel κ(τ) could be any symmetric monotonous decreasing function. For

simplicity, we use a Gaussian here, but other kernels would be possible as well. The

kernel acts as a weighting function that weights the contribution of parameters θ

4.3. Plateau-free Gradients 89

that were offset by τ ∈Θ. This means that, in addition to integrating all light paths x

over Ω, we now also integrate over all parameter offsets τ in Θ. We do not convolve

across the path space Ω but across the parameter space θ , e.g., the cup’s rotation in

Fig. 4.3.

Estimation: To estimate the (even higher-dimensional) integral in Eq. 4.6, we

again make use of an MC estimator

Q̂≈ 1
N

N

∑
i

κ(τ) f (xi,θ − τi) , (4.7)

which is a practical approximation of Eq. 4.6 that can be solved with standard

path tracing, independent of the dimensionality of the light transport or the number

of optimization dimensions.

Gradient : Analogously to Eq. 4.5, we can estimate the gradient of Q through the

gradient of its estimator

∂̂Q
∂θ

=
∂

∂θ

1
N

N

∑
i=1

κ(τi) f (xi,θ − τi) . (4.8)

Due to the linearity of differentiation and convolution, there are two ways of

computing Eq. 4.8: one for having a differentiable renderer, and one for a renderer

that is not differentiable. We discuss both options next.

Plateau-free gradients if P is differentiable: With access to a differentiable

renderer (i.e., access to ∂P/∂θ), we can rewrite Eq. 4.8 as

∂̂Q
∂θ

=
1
N

N

∑
i=1

κ(τi)
∂P
∂θ

(θ − τi)︸ ︷︷ ︸
Diff. Renderer

. (4.9)

Therefore, all that that needs to be done is to classically compute the gradients of a

randomly perturbed rendering and weight them by the blur kernel.

Plateau-free gradients if P is not differentiable: In several situations, we

might not have access to a differentiable renderer, or a non-differentiable renderer

might have advantages, such as computational efficiency, rendering features or

compatibility with other infrastructure. Our derivation also supports this case, as we

4.3. Plateau-free Gradients 90

can rewrite Eq. 4.8 as

∂̂Q
∂θ
≈ 1

N

N

∑
i=1

∂κ

∂θ
(τi)︸ ︷︷ ︸

Diff. Kernel

P(θ − τi)︸ ︷︷ ︸
Renderer

, (4.10)

which equals sampling a non-differentiable renderer and weighting the result by

the gradient of the blur kernel. This is possible due to the additional convolution

we introduce: prior work [169; 183] must take special care to compute derivatives

(Eq. 4.5), as in their case, optimizing θ might discontinuously change the pixel

integral. We circumvent this problem through the convolution with κ , which ensures

that, in expectation, θ continuously influences the pixel integral.

4.3.2 Variance Reduction

Drawing uniform samples from Θ×Ω will result in a sample distribution that

is not proportional to the integrand and hence lead to high-variance gradient

estimates and ultimately slow convergence for inverse rendering.

y=κ(τ)

a)

y=∇κ(τ)

b)

y~|∇κ(τ)|

d)c)

y=|∇κ(τ)|
Figure 4.4: Our kernel κ (a), its gradient ∇κ

(b), the positivized gradient (c)
and samples drawn proportional
thereto (d).

In our case, the integrand is the product

of two functions (the kernel κ and the

scene function f), which Veach [304]

showed how to optimally sample for. As

we generally consider the rendering op-

erator a black box, we can only reduce

variance by sampling according to the

remaining function, the (differentiated)

kernel κ (Fig. 4.4b).

While importance-sampling for a

Gaussian (τi ∼ κ , required to reduce

variance of Eq. 4.9) is easily done,

importance-sampling for the gradient of a Gaussian (τi ∼ ∂κ/∂θ , to be applied

to Eq. 4.10) is more involved.

4.3. Plateau-free Gradients 91

The gradient of our kernel κ is

∂κ

∂θ
(τ) =

−τ

σ3
√

2π
exp

(
−τ2

2σ2

)
, (4.11)

which is negative for τ > 0. We enable sampling proportional to its PDF (which is

also partially negative) by “positivization” [224], and hence sample for

|∂κ

∂θ
(τ)|

instead (Fig. 4.4c). We note that this function is separable at τ = 0 and thus treat

each halfspace separately in all dimensions of τ and σ . In order to sample we use

the inverse CDF method. The CDF of Eq. 4.11 is

F(τ) = 0.5sgn(τ)exp
(
− τ2

2σ2

)
+C ,

where C = 1 on the positive halfspace and 0 otherwise (this originates from the fact

that the CDF must be continuous, monotonically increasing and defined on (0,1)).

Inverting the CDF leads to

F−1(ξ) =
√
−2σ2 log(ξ) ,

into which we feed uniform random numbers ξ ∈ (0,1) that generate samples

proportional to |∂κ

∂θ
(τ)| (Fig. 4.4d).

Obtaining a zero-variance estimator for a positivized function requires sampling

at at least two points: on the positivized and the regular part of the function [224]. We

note that the function we sample for is point-symmetric around 0 in each dimension

and hence use antithetic sampling [100], i.e., for each sample τ , we additionally

generate its negated counterpart −τ . Doing so results in a zero-variance estimator,

as we can perfectly sample for both parts of the function. In additional experiments,

we also found stratified sampling to be more brittle than antithetic sampling.

In previous inverse rendering work, antithetics were applied to BSDF gradients

in classic rendering [11; 327] and to improve convergence on specular surfaces [330],

4.4. Experiments 92

while we use them as a means of reducing gradient variance due to plateau-removal,

which is not present in such approaches.

4.3.3 Adaptive bandwidth

Adjusting σ gives us control over how far from the current parameter θ

our samples will be spaced out. A high σ may be useful in the early

stages of the optimization, when there still is a considerable difference

between θ and θref, whereas we want a low σ towards the end of the

75%25% 50% 100%
Figure 4.5: We visualize the adaptive spread

of the smoothing at n% of the op-
timization. The reference position
is shown dotted.

optimization to zero-in on θref. Through-

out the optimization, we hence decay the

initial σ0 according to a linear schedule,

i.e., σt+1 = σ0− t(σ0−σm), where σm

is a fixed minimum value we choose to

avoid numerical instabilities that would otherwise arise from σ → 0 in, e.g., Eq. 4.11.

Fig. 4.5 shows the progression of the blur throughout optimization.

4.3.4 Implementation

We outline our gradient estimator in pseudo-code in Alg. 4. We importance-sample

for our kernel with zero variance, use antithetic sampling and adapt the smoothing

strength via σ . As Alg. 4 shows, our method is simple to implement and can be

incorporated into existing frameworks with only a few lines of code. We implement

our method in PyTorch, with Mitsuba as rendering backbone, and use Adam as our

optimizer. For the remainder of this work, we use all components unless otherwise

specified: importance sampling, adaptive smoothing and antithetic sampling. More-

over, we use Eq. 4.10 for computational efficiency (see Sec. 4.4.3) if not specified

otherwise.

4.4 Experiments
We analyze our method and its variants in qualitative and quantitative comparisons

against other methods and further compare their runtime performance. For the

hyperparameters we use for our method and the competitors, please see Appendix

Tab. B.1.

4.4. Experiments 93

Algorithm 4 Gradient estimation of the scene function f at parameters θ with
perturbations τ ∼N (0,σ) at N samples.

1: # Equation 10
2: procedure ESTIMATEGRADIENT(P, θ , σ , N)
3: G := 0
4: for i ∈ (1,N/2) do
5: ξ ← UNIFORM(0,1)
6: τ ←

√
−2σ2 log(ξ)

7: G← G+P(θ + τ)−P(θ − τ)
8: end for
9: return G / N

10: end procedure

4.4.1 Methodology

Methods: For our experiments, we compare four methods. The first is a differen-

tiable rasterizer, SoftRas [179]. Recall that soft rasterizers implicitly remove plateaus,

which is why they are included here, despite their shortcomings for more complex

forms of light transport. For our method, we evaluate its two variants: The first

uses a differentiable renderer and weights its gradients (Ourκ∂P, Eq. 4.9), while the

second one performs differentiation through perturbation (Our∂κP, Eq. 4.10). For

both, we use Mitsuba 3 as our backbone, in the first variant using its differentiation

capabilities to compute ∂P, in the latter using it as a non-differentiable black-box to

compute only P. We run all methods for the same number of iterations and with the

same rendering settings (samples per pixel (spp), resolution, path length, etc.).

Metrics: We measure the success of an optimization on two metrics, image-space

and parameter-space MSE. As is common in inverse rendering, image-space MSE

is what the optimization will act on. Parameter-space MSE is what we employ as a

quality control metric during our evaluation. This is necessary to interpret whether

the optimization is working correctly once we have hit a plateau, as the image-space

MSE will not change there. Note that we are not optimizing parameter-space MSE

and optimization never has access to this metric.

Tasks: We evaluate our method and its competitors on six optimization tasks that

feature advanced light transport, plateaus and ambiguities. We show a conceptual

sketch of each task in Fig. 4.6 - Fig. 4.7 and provide a textual explanation next.

4.4. Experiments 94

Initial

Di�. Path Tracer Ours

Reference

Img. MSE Param. MSE

CUP

Initial

Di�. Path Tracer Ours

Reference

SHADOWS

Img. MSE Param. MSE

Initial

Di�. Path Tracer Ours

Reference

GLOBAL ILLUMINATION

Img. MSE Param. MSE

Initial

Di�. Path Tracer Ours

Reference

OCCLUSION

Img. MSE Param. MSE

Figure 4.6: We show the optimization tasks and results for Our∂κP (“Ours”, orange) and our
baseline Mitsuba (“Diff. Path Tracer”, blue) on the tasks CUP and SHADOWS

(top) and OCCLUSION and GLOBAL ILLUMINATION (bottom).

4.4.2 Results

Qualitative: We now discuss our main result, see Fig. 4.6 and Fig. 4.7.

CUP: A mug is rotated around its vertical axis and as its handle gets occluded, the

4.4. Experiments 95

Initial

Di�. Path Tracer Ours

Reference

SORT

Initial

Di�. Path Tracer Ours

Reference

CAUSTIC

Img. MSE Param. MSE Img. MSE Param. MSE

Figure 4.7: We show the optimization tasks and results for Our∂κP (“Ours”, orange) and our
baseline Mitsuba (“Diff. Path Tracer”, blue) on the tasks SORT and CAUSTIC.

Table 4.2: Image- and parameter-space MSE of different methods (columns) on different
tasks (rows).

Rasterizer Path Tracer

SoftRas Mitsuba Our∂κP Ourκ∂P

Img. Para. Img. Para. Img. Para. Img. Para.

CUP 3.66×10−1 2.72×10−2 5.49×10−3 0.75×10−1 444...999222×××111000−6 444...111888×××111000−7 4.75×10−4 2.77×10−1

SHADOWS 1.64×10−3 1.42×10−1 1.64×10−3 5.06×10−0 111...777444×××111000−5 111...888111×××111000−3 5.12×10−4 1.28×10−0

OCCL. 5.33×10−2 7.18×10−3 5.85×10−2 5.23×10+1 222...333444×××111000−4 333...222999×××111000−3 5.37×10−2 1.87×10+1

GLOBAL ILL. – – 3.78×10−2 3.87×10−1 555...000777×××111000−5 888...777111×××111000−4 5.88×10−2 2.55×10−1

SORT 1.85×10−2 1.57×10−0 1.18×10−2 6.64×10−0 333...888111×××111000−3 444...111999×××111000−1 1.02×10−2 2.24×10−0

CAUSTIC – – 3.12×10−1 8.50×10−0 111...888999×××111000−5 999...777666×××111000−5 2.42×10−1 4.03×10−0

optimization has reached a plateau. Our method differentiates through the plateau.

The differentiable path tracer gets stuck in the local minimum after slightly reducing

the loss by turning the handle towards the left, due to the direction of the incoming

light.

SHADOWS: An object outside of the view frustum is casting a shadow onto a plane.

Our goal is to optimize the hidden object’s position. Differentiable rasterizers can

not solve this task, as they a) do not implement shadows, and b) cannot differentiate

what they do not rasterize. The plateau in this task originates from the fact that the

4.4. Experiments 96

shadows do not overlap in the initial condition, which creates a situation akin to

Fig. 4.2 b). Again, our method matches the reference position very well. Mitsuba,

first moves the sphere away from the plane (in negative z-direction), as this reduces

the footprint of the sphere’s shadow on the plane and thus leads to a lower error,

and then finally moves the sphere out of the image, where a plateau is hit and the

optimization can not recover. The blue line in the image-space plot in Fig. 4.6 b)

illustrates this problem, as the parameter-error keeps changing very slightly, but the

image-space error stays constant.

OCCLUSION: Here, a sphere translates along the viewing axis to match the

reference. The challenge is that the sphere initially is occluded by another sphere,

i.e., we are on a plateau as long as the occluder is closer to the camera than the sphere

we are optimizing. The baseline path tracer initially pushes the red sphere towards

the back of the box, as this a) reduces the error in the reflection on the bottom glass

plane, and b) lets the shadow of the red sphere (visible underneath the blue sphere in

the initial configuration) disappear, which again leads to a lower image-space error.

Our method, in contrast, successfully differentiates through both the plateau (which

originates from the red sphere having a negligible effect on the objective function)

and the discontinuity that arises when the red sphere first moves closer to the camera

than the blue occluder.

GLOBAL ILLUMINATION: We here show that our method is compatible with

the ambiguities encountered in advanced light transport scenarios. The goal of

this optimization task is to simultaneously move the top-light to match the scene’s

illumination, change the left wall’s color to create the color bleeding onto the box,

and also to rotate the large box to an orientation where the wall’s reflected light is

actually visible. The optimization only sees an inset of the scene (black in Fig. 4.6

d) and hence only ever sees the scattered light, and never the wall’s color or light

itself. The baseline cannot resolve the ambiguity between the box’s rotation, the

light position and the wall’s color, as it is operating in a non-smoothed space. For a

plot of the results, not just the inset, see Appendix Fig. B.1. Our method finds the

correct combination of rotation, light position and wall color.

4.4. Experiments 97

SORT: In this task, we need to sort a randomly perturbed assortment of 75 colored

primitives into disjoint sets. In this problem, we optimize the x- and y-coordinates

of each cube, which leads to a 150-dimensional setting, and hence have a plateau in

each dimension, as most of the cubes are initially not overlapping their reference.

Mitsuba cannot find the correct position of non-overlapping primitives and moves

them around to minimize the image error, which is ultimately achieved by moving

them outside of the view frustum. Our method, admittedly not perfect on this task,

finds a more correct positions, more similar to the reference.

CAUSTIC: Lastly, the CAUSTIC task features a light source outside the view

frustum illuminating a glass sphere, which casts a caustic onto the ground. The goal

is to optimize the light’s position in order to match a reference caustic. As the sphere

does not change its appearance with the light’s movement, the optimization has to

solely rely on the caustic’s position to find the correct parameters. Similar to the GI

task, this is not solvable for rasterizers. Our method reaches the optimum position

with high accuracy. For the baseline path tracer, we see a failure mode that is similar

to the SHADOW task. In this case, the image space error can be reduced by moving

the light source far away, as the bulk of the error comes from the caustic not being

cast onto the correct position. Moving the light source far away reduces this error,

but also leads into a local minimum where there is no illumination at all, resulting in

the gray image in Fig. 4.7.

Quantitative: Tab. 4.2 reports image- and parameter-space MSE for all meth-

ods across all tasks. The quantitative results confirm what was conveyed visually:

regular gradient-based path tracers that operate on non-smooth loss landscapes fail

catastrophically on our tasks. SoftRas manages to overcome some plateaus, but

struggles with achieving low parameter error, as it blurs in image space but must

compare to the non-blurred reference (as all methods), which leads to a notable dif-

ference between the final state and the reference parameters. To achieve comparable

image-space errors, we render the parameters found by SoftRas with Mitsuba.

Our method Our∂κP, in contrast, achieves errors of as low as 10−7, and consistently

outperforms its competitors on all tasks by several orders of magnitude. Interestingly,

4.4. Experiments 98

Ourκ∂P (i.e., using the gradients from the differentiable renderer) works notably

worse than Our∂κP (but mostly still outperforms Mitsuba). We attribute this to the

fact that we cannot importance-sample for the gradient here, as we do not know

its PDF. Instead, we can only draw samples proportional to the first term in the

product, κ(τ), which places many samples where the kernel is high, i.e., at the

current parameter value. As we can see from the rigid optimization by Mitsuba, the

gradient at the current parameter position is not very informative, so placing samples

there is not very helpful.

4.4.3 Timing

We now compare our approach’s performance and will see that, while Ourκ∂P

needs more time to complete an optimization, Our∂κP on average is 8× faster than

differentiable rendering with Mitsuba.

Our method requires the additional step of (over-) sampling the parameter space

in order to compute our smooth gradients. However, as shown in Eq. 4.10, our

stochastic gradient estimation through the derivative-kernel (Our∂κP) allows us to

skips the gradient computation step of the renderer. While there exist techniques

like the adjoint path formulation [220] and path replay backpropagation [306],

the gradient computation in inverse rendering still is computationally expensive.

Additionally, correct gradients w.r.t. visibility-induced discontinuities require a

special integrator (re-parametrization or edge sampling) and the creation of a gradient

tape or compute graph.

Our method Our∂κP, in contrast, does not need to compute ∂P/∂θ and only

requires a forward model. We can hence conveniently use the regular path integra-

tor instead of its re-parametrized counterparts, and skip the gradient computation

altogether. Moreover, our earlier efforts to develop an efficient importance-sampler

will now pay off, as our method converges with as few as one extra sample only.

This results in notable speedups, and Our∂κP hence significantly outperforms other

differentiable path tracers in wall-clock time at otherwise equal settings (see Tab. 4.3).

4.5. Discussion 99

Table 4.3: Timing comparison for the three path tracing variants on all tasks. We report the
average time for a single optimization iteration (with same hyperparameters) in
seconds, so less is better.

CUP SHAD. OCCL. GI SORT CAUS.

Mitsuba 1.12 s 0.64 s 0.37 s 0.44 s 2.88 s 1.02 s
Our∂κP 0.10 s 0.04 s 0.09 s 0.15 s 2.23 s 0.08 s
Ourκ∂P 2.22 s 1.43 s 0.91 s 1.72 s 32.02 s 4.02 s

4.4.4 Ablation

We now ablate our method to evaluate the effect its components have on the success

of the optimization outcome. We will use Our∂κP from Tab. 4.2 as the baseline and

ablate the following components: importance sampling (noIS), adaptive perturba-

tions (noAP) and antithetic sampling (noAT). We hold all other parameters (spp,

resolution, etc.) fixed and run the same number of optimization iterations that was

also used in Tab. 4.2 and in our previous experiments (e.g., Fig. 4.6).

We report the relative change between the ablations and our baseline in Tab. 4.4.

We report log-space values, as the results lie on very different scales. From the

averages in the last row, it becomes apparent that all components drastically con-

tribute to the success of our method, while the most important part is the antithetic

sampling. We emphasize that importance- and antithetic-sampling are variance

reduction techniques that do not bias the integration, i.e., they do not change the

integral’s value in expectation. Therefore, our approach should converge to similar

performance without these components, but it would take (much) longer, as the

gradient estimates will exhibit more noise.

4.5 Discussion
Related Approaches Other methods proposed blurring by down-sampling in order

to circumvent plateaus [255; 157]. The quality upper bound for this is SoftRas,

which we compare against in Tab. 4.2, as blurring by down-sampling does not

account for occlusion, whereas SoftRas uses a smooth z-test. Another method

that could be tempting to employ is FD. Unfortunately, FD does not scale to higher

problem dimensions, as it requires 2n function evaluations on an n-dimensional

4.5. Discussion 100

Table 4.4: Ablation of different components (columns) for different tasks (rows). We report
the log-relative ratio w.r.t. Our∂κP, so higher values mean higher error.

noIS noAP noAT

Img. Para. Img. Para. Img. Para.

CUP 4.75× 6.30× 6.96× 11.89× 3.19× 4.27×
SHAD. 5.27× 5.98× 3.07× 1.27× 5.30× 6.03×
OCCL. 3.18× 3.29× 8.73× 8.62× 8.73× 9.65×

GI 10.38× 10.84× 6.40× 9.15× 5.62× 12.06×
SORT 1.48× 0.70× 1.14× 2.04× 1.59× 1.09×

CAUS. 3.76× 8.35× 0.69× 1.70× 4.24× 9.27×

Mean 4.81× 5.91× 4.50× 5.78× 4.78× 7.06×

problem (on our SORT task, this would increase the per-iteration runtime by ×375).

A more economical variant is SPSA, which perturbs all dimensions at once [283].

However, neither FD nor SPSA actively smoothes the loss landscape, as the gradient

is always estimated from exactly two measurements, taken at fixed locations, often

from a Bernoulli distribution. Our approach, in contrast, uses N stochastic samples,

where N is independent of the problem dimension. In fact, we use N = 2 for

most of our experiments (Appendix Tab. B.1contains more details on experiment

parametrization). Our method’s advantages thus are twofold: first, we do not require

cubature over the parameter space, but instead explore the space by stochastically

sampling it. Second, our developed formalism allows to interpret this stochastic

sampling as a means to compute a MC-estimate of the gradient, and thus enables to

simultaneously smooth the space and perform (smooth) differentiation.

Indeed, the formalism developed in Sec. 4.3.1 can be interpreted as a form of

variational optimization [285; 286], where one would descend along the (smooth)

variational objective instead of the true underlying function. As such, Eq. 4.10 can

be seen as an instance of a score-based gradient estimator [292], while Eq. 4.9 can

be interpreted as reparametrization gradient [151; 270]. Suh et al. [290] provide

intuition on each estimator’s performance and align with our findings of the score-

based estimator’s superiority under a discontinuous objective. It is one of the

contributions of this work to connect these variational approaches with inverse

rendering.

4.6. Conclusion 101

Limitations As our method relies on Monte Carlo estimation, the variance increases

favourably, but still increases with higher dimensions. This can usually be mitigated

by increasing the number of samples N. We show examples of a high-dimensional

texture optimization in Appendix Fig. B.5. Moreover, a good initial guess of σ is

helpful for a successful optimization outcome (see Appendix Fig. B.3and Appendix

Tab. B.2). We recommend setting σ to roughly 50 % of the domain and fine-tune

from there, if necessary.

4.6 Conclusion
We have proposed a method for inverse rendering that convolves the rendering

equation with a smoothing kernel. This has two important effects: it allows straight-

forward differentiation and removes plateaus. The idea combines strengths of

differentiable rasterization and differentiable path tracing. Extensions could include

applying our proposed method to path tracing for volumes or Eikonal transport

[20; 328] or other fields that suffer from noisy or non-smooth gradients, such as

meta-learning for rendering [64; 174]. Our approach is simple to implement, is

efficient, has theoretical justification and optimizes tasks that existing differentiable

renderers so far have diverged upon.

Chapter 5

ZeroGrads: Learning Local

Surrogate Losses for

Non-Differentiable Graphics

Abstract

Gradient-based optimization is now ubiquitous across graphics, but unfortunately

can not be applied to problems with undefined or zero gradients. To circumvent this

issue, the loss function can be manually replaced by a “surrogate” that has similar

minima but is differentiable. Our proposed framework, ZeroGrads, automates this

process by learning a neural approximation of the objective function, which in turn

can be used to differentiate through arbitrary black-box graphics pipelines. We

train the surrogate on an actively smoothed version of the objective and encourage

locality, focusing the surrogate’s capacity on what matters at the current training

episode. The fitting is performed online, alongside the parameter optimization, and

self-supervised, without pre-computed data or pre-trained models. As sampling

the objective is expensive (it requires a full rendering or simulator run), we devise

an efficient sampling scheme that allows for tractable run-times and competitive

performance at little overhead. We demonstrate optimizing diverse non-convex,

non-differentiable black-box problems in graphics, such as visibility in rendering,

discrete parameter spaces in procedural modeling or optimal control in physics-

5.1. Introduction 103

Figure 5.1: Our method optimizes arbitrary (black-box) graphics pipelines, which all do
not trivially provide gradients, such as rendering (left: finding the box and light
position under a discontinuous integrand), modelling (middle: discrete number
of vertical and horizontal wicker stakes), and animation (right: optimal control
of the engine turn-off time), by fitting a neural network to the loss landscape
and then using the network’s gradients for parameter optimization.

driven animation. In contrast to other derivative-free algorithms, our approach scales

well to higher dimensions, which we demonstrate on problems with up to 35,000

interlinked variables.

5.1 Introduction
Gradient-based optimization has recently become an essential part of many graphics

applications, ranging from rendering to find light or reflectance [64; 249; 80], over

procedural material modelling [121] to animation of characters or fluids [99; 269].

These methods provide state-of-the-art results, in particular when combined with

large amounts of training data and NNs that represent the desired mappings or assets.

In order to train these methods via GD, the pipeline needs to be fully differentiable,

allowing to backpropagate gradients from the objective function to the optimization

parameters. This often is enabled by intricate, task-specific derivations [183; 169]

or requires fundamental changes to the pipeline, such as the switch to a dedicated

programming language [12; 123; 10; 132].

In practice, the application of these ideas remains limited, as many existing

graphics pipelines are black-boxes (e.g., entire 3D modelling packages such as

Blender or rendering pipelines such as Renderman [39] or Unity [98]) that do not

provide access to their internal workings and hence cannot be differentiated. Further,

even if we were given access to the pipeline’s internals, the employed functions

might not be differentiable (e.g., the step function) or provide gradients that are

5.1. Introduction 104

insufficient for convergence [192]. The mindset of this chapter is that we only have

access to a forward model, e.g., a modeling pipeline, and a reference, e.g., a target

image. Using these two, a loss can be computed – its gradients, however, cannot be

used.

If a loss is not differentiable in practice, it can be approximated by a “surrogate”

loss (Fig. 5.2). The surrogate is a function that has similar minima as the true loss,

but also provides gradients that are useful when employed in an optimization. While

the concept of surrogate modelling is not new (see Sec. 5.2), it remains unclear

how to efficiently find a surrogate loss for any arbitrary graphics pipeline, as here

the sampling must be sparse (recall, rendering a sample is expensive), and the

optimization problems’ dimensionality can vary by several orders of magnitude.

In this chapter, we propose ZeroGrads, a systematic and efficient way of learning

local surrogate losses, requiring no more than a forward model and a reference.

Figure 5.2: Regular forward models R might not be able to
provide gradients w.r.t. their input parameters θ (red
arrow, top). Our approach, ZeroGrads, provides this
ability via a local learned surrogate h (green arrows,
bottom) that maps θ to the associated loss and can
be differentiated analytically.

To learn our surro-

gate loss and use it in

an optimization, we fol-

low four key steps: We

first smooth the origi-

nal loss by convolving

the cost landscape with a blur kernel, so that it provides gradients that lead to (im-

proved) convergence when used during optimization. We secondly fit a surrogate,

a parametric function such as a neural network or a quadratic potential, to that

smoothed loss. As the surrogate is differentiable by construction, we can query it to

get surrogate gradients that drive the parameter optimization. We thirdly constrain

this fit to the local neighbourhood of the current parameters, as the global cost land-

scape is in large parts irrelevant for the current optimization step. By locally updating

our surrogate, we allow it to focus on what matters “around” the current solution.

However, querying the objective function to create samples for our surrogate fitting

is expensive, as each sample requires the execution of the full forward model, such as

5.1. Introduction 105

a light transport simulation or physics solver. Therefore, fourth and finally, we derive

an efficient sampler that reduces the variance of the surrogate’s gradient estimates

and thus allows us to use ZeroGrads with a low number of sparse samples at tractable

runtimes.

In contrast to prior work [122], our local surrogate losses can be trained online,

alongside the actual parameter optimization, and self-supervised, without the need for

pre-trained models or pre-computed ground truth gradients. Moreover, in comparison

to other gradient estimation techniques [65; 283], our neural proxy allows us to move

the noise and variance in the gradient estimates from the parameter domain into the

proxy domain, where it is naturally smoothed by the network’s hysteresis, allowing

ZeroGrads to scale up to very high dimensions. In summary, our contributions are:

• ZeroGrads, a framework that maps a forward model without usable gradients

into a smooth, differentiable surrogate function, such as an NN, with analytic

gradients.

• Reducing the variance of surrogate and parameter updates to allow tractable

runtimes and unsupervised and successful on-the-fly optimization.

• Optimizing several non-differentiable black-box graphics problems from ren-

dering (visibility) over modelling (discrete procedurals) to simulation and

animation (optimal control).

• Showing that our surrogates scale favourably to higher dimensions, with up to

several thousand correlated optimization variables, where existing derivative-

free methods often struggle to converge.

• A publicly available implementation of our method and benchmarks at https:

//github.com/mfischer-ucl/zerograds

We would like to emphasize that we do not claim superiority (less variance,

better convergence, ...) over existing, specialized methods such as Mitsuba [130],

Redner [169] or PhiFlow [115], but rather broaden the toolkit of inverse graphics

https://github.com/mfischer-ucl/zerograds
https://github.com/mfischer-ucl/zerograds

5.2. Previous Work 106

solvers by now enabling gradient-based optimization on arbitrary, non-differentiable

graphics pipelines.

5.2 Previous Work

Optimization in Graphics. Parameters of graphics models are now routinely

optimized so as to fulfill user-provided goals. The two main ingredients enabling

this are gradient-based optimization and tunable architectures. We will not consider

the many different exciting architectures in this work, but focus on the optimization

itself. Gradients are typically computed by using a language that allows efficient

auto-differentiation, such as PyTorch [231] or JAX [30], often targeting GPUs.

Unfortunately, several problems in graphics are not differentiable.

Gradient-free optimization algorithms [260] such as asking a user [185], global

optimization [137], direct search [242], SA [152], SPSA [283], particle swarms

[230] or GAs [116] have largely fallen from favour in everyday graphics use. This is

partially due to the fact that gradient-free optimization – even on smooth problems

– often requires a large number of function evaluations before converging [134],

and, in general, struggles with convergence as problem dimensionality increases.

Additionally, gradient-free optimizers often suffer from high per-iteration cost in

higher dimensions (e.g., FD or [331], see Tab. 5.1), require the computation of the

Hessian matrix in Newton-type methods, or make use of covariance-matrices (CMA-

ES [101]), whose memory requirements grow quadratically with problem dimension

and require computationally complex steps like inversion or eigendecomposition.

The aforementioned aspects often lead to trade-offs between performance, scalability

and runtime that practitioners have to take into consideration. GD, in contrast, has

strong convergence guarantees (under convex objectives), is highly scalable, can be

parallelized effectively, and has shown superior performance in high-dimensional

settings (e.g., NN training). Unfortunately, it cannot be used on many relevant

problems (although the cost landscape itself might be smooth), as many graphics

pipelines are simply not designed to be differentiable. Our approach circumvents

this issue by fitting a model of the cost landscape, which can then be differentiated to

5.2. Previous Work 107

Table 5.1: Comparison of optimization algorithms. n is the problem dimensionality, p is
the population size in evolutionary algorithms, k is the state’s size in stateful
algorithms, b is the batchsize in multi-sample algorithms, t and ti are the times
required for a function evaluation and a state update, respectively. Stateful
denotes whether the method maintains a state other than the current optimization
parameter.

Memory Gradient Iter. Cost Scalable Robust Stateful

Ours n+ k ✓ b · t + tGD ✓ ✓ ✓
SPSA n ✓ 2t ✓ ✓ ✕

FR22 n ✓ b · t ✓ ? ✕

CMA-ES n2 + k ✕ p · t + tCMA ✓ ✓ ✓
GA n ✕ p · t + tGA ✕ ✕ ✓
FD n ✓ 2n · t ✕ ✕ ✕

SA n ✕ t ✕ ✕ ✕

provide surrogate gradients that GD can work with. Even for non-smooth problems,

our formulation makes the problem smooth and hence amenable to GD.

Differentiation. Most graphics pipelines used in production (e.g., Blender, GIMP,

Photoshop) are not differentiable, as they are not implemented in a differentiable

programming language. The deeper underlying mathematical problem is that their

output often relies on integration – however, differentiation and the typical integral

estimation through MC cannot be interchanged without further considerations. A

prominent example are discontinuities in rendering, which have sparked a body of

work by Lee et al. [163]; Bangaru et al. [12]; Loper and Black [182]; Kato et al.

[143]; Li et al. [169]; Liu et al. [179]; Rhodin et al. [259]; Xing et al. [322] or Loubet

et al. [183], to only name a few salient ones. Similar problems appear in vector

graphics [170], signed distance functions (SDFs) [307; 13], entire programs [33]

or physics [123; 35; 198]. All these approaches require access to the internals of

the graphics pipeline in order to replace or change parts such that gradients can be

backpropagated. Our approach, in contrast, assumes the pipeline to be a black-box

and does not make any assumptions or approximations to the internals.

Gradient Smoothing. Another approach for optimizing non-differentiable problems

has been proposed as stochastic optimization. Here, discontinuities and plateaus are

5.2. Previous Work 108

smoothed out by optimizing over the expected value of a distribution (generally MC-

approxim. via randomized sampling) instead of a rigid parameter [22; 36; 57; 286],

with the resulting gradient sometimes being referred to as zeroth-order [290]. This

has successfully been used to smooth out plateaus and discontinuities in rendering

([65; 161]), contact dynamics in robotics ([291; 196]) and policy optimization in

reinforcement learning ([318; 290]), albeit without the explicit learning of a proxy

cost model.

Proxies. A key insight is that we only need the loss’ gradients, and not those of

the entire pipeline. Hence, if a part in a conventional graphics pipeline cannot be

differentiated, we search for a similar function that we can differentiate instead,

our proxy. As the proxy is an analytic function, the gradients w.r.t. its input can

readily be computed via AD and then be used for optimization. Graphics is a good

fit for neural proxies, as we can freely sample the objective in many cases, e.g., by

rendering an image or running a simulation (a “simulation-optimization” setting

[159]). While easy to do, creating a sample is expensive.

The concept of “Neural Proxies” was pioneered for physics by Grzeszczuk

et al. [90] and is now applied to problems such as material editing [121], photo

editing [300; 68], hardware and design [299], software synthesis [62], simulation

[204; 257; 7] or animation [276; 208; 278]. Rendering itself becomes differentiable

when replaced by a NN proxy [206], however, having a NN emulate the complex

behaviour of a full graphics pipeline might not scale to complex assets.

Surrogate losses. Surrogate losses [246] (sometimes also called meta-models [16;

28]) extend the idea of proxies by providing an approximation to the entire forward

model’s behaviour by only emulating its response (or loss landscape), without

necessarily replicating all the internals of the mdoel. Differentiating the surrogate

will provide gradients which can then be used for (gradient-based) optimization.

Surrogates are especially popular when taking a sample is expensive, like in airplane

design [75] or neural architecture search [336], and can be modelled in a number

of ways, e.g., through polynomials [137], radial basis functions (RBFs) [96] and

recently neural networks [89; 233]. Most of these methods learn surrogates for

5.3. Our approach 109

the entire cost landscape (typically in a simplified setting, e.g., classification), with

the exception of response surface maps (RSMs), which fit a first- or second order

polynomial to the local neighbourhood, but are known to not converge on higher-

dimensional problems [311]. More crucially, aside from global fitting, most methods

assume the availability of a large set of data samples, e.g., a curated image collection

like ImageNet [48]. In our setting, in contrast, sampling is expensive, which is why

we sample sparsely and locally and fit the surrogate in-the-loop, during optimization.

Our method hence extends the family of surrogate-based optimizers, and, in contrast

to previous work, scales to a wide range of optimization tasks in high dimensions.

O
bj

ec
ti

ve

a) Input b) Smoothing c) Sampling d) Surrogate e) Locality g) Updatef) Gradient est.

Figure 5.3: A conceptual illustration of our approach; each subplot shows a one-dimensional
cost landscape. The x-axis denotes the parameter position. For details please
refer to Sec. 5.3: Overview.

Gradient estimation. The surrogate itself is updated gradient-based, by sampling

the objective function a finite number of times and then estimating the surrogate’s

gradient from its prediction error. For general learning, building gradients is funda-

mentally a MC estimation problem [195], akin to what graphics routinely is solving

for rendering [304]. We identify the similarity of estimating proxy gradients and

simulating light transport (high dimensionality, sparsity, product integrands) and

employ variance reduction based on importance sampling [304; 139; 140] the lo-

cal parameter neighbourhood to increase the efficiency of our surrogate gradient

estimates.

5.3 Our approach
Given a scalar objective function f (θ) : Θ→ R+

0 over an n-dimensional parameter

space Θ, we would like to find the optimal parameters θ ∗ that minimize f . Typically,

gradient-based optimizers such as SGD or ADAM are used for such a task. How-

ever, in the setting of this work, their direct use is not possible, as the objective’s

gradients ∂ f/∂θ are either not accessible (in a black-box pipeline), undefined (at

5.3. Our approach 110

discontinuities), zero (on a plateau) or too costly to compute (e.g., when appearing

in an integral). We are, however, able to sample this objective function by sampling

a set of parameters and then comparing the resulting output with the reference. We

propose to now locally fit a tunable and differentiable surrogate function h(θ ,φ) to

those samples, whose derivative ∂h/∂θ will act as surrogate gradient and drive the

optimization.

Overview Our approach is summarized in Alg. 5 and Fig. 5.3. Given an arbitrary

(potentially non-smooth and non-convex) objective function (Fig. 5.3a, also called

loss landscape) and a randomly initialized parameter state θ , we first smooth the ob-

jective via convolution with a Gaussian kernel in order to reduce plateaus (Sec. 5.3.1

and Fig. 5.3b). We subsequently fit our surrogate h (Sec. 5.3.2) to this smooth

objective. However, sampling is expensive (requiring a full rendering or simulator

run), and global sampling and surrogate fitting would be very approximate (Fig. 5.3c,

d), which is why we enforce locality via another Gaussian kernel (Fig. 5.3e and

Sec. 5.3.3) and hence encourage the surrogate to focus on what matters at the current

optimization iteration. Unfortunately, we do not have supervision gradients to train

our surrogate on, which is why we must estimate the surrogate’s gradient (Sec. 5.3.4).

While some samples are more informative than others, it is unclear how to find those,

i.e., how we can efficiently sample this convolved space. To this end, we derive an

efficient importance-sampler (Fig. 5.3f and Sec. 5.3.5) that samples according to

the locality terms and thus reduces the variance of the estimated surrogate gradient.

Finally, we use this estimated gradient to update our surrogate (Fig. 5.3g) in order to

improve its fit to the objective. We can then descend along the surrogate’s gradient

∂h/∂θ (readily available via AD) to update the optimization parameter θ and repeat

the process from b) onward, i.e., the surrogate is updated from its previous state

instead of re-fit. Lines 5 and 6 in Alg. 5 illustrate this, where OPTIMIZE performs

gradient descent steps on a variable.

5.3.1 Smooth objective

As the objective might not always be differentiable (or provide gradients that are of

little use [192]), we seek to find a function that has similar optima and is differentiable.

5.3. Our approach 111

Figure 5.4: Samples of the smooth objective (bottom row) on which we learn our surrogate:
Perturbing the rigid scene parameters (top row) smooths discontinuities, e.g.,
the binary on/off for the LED task (an inset is shown).

In practice, the issue is not so much in non-differentiable point singularities (which

are even present in the popular ReLU activation), but regions with zero gradients

(“plateaus”). These can be removed by convolving the objective with a blur kernel.

Similar ideas have been applied to rasterization [179; 237] and path-tracing [65],

which we scale to arbitrary spaces. We define the smooth objective g(θ) : Θ→ R+
0

as

g(θ) = κ ∗ f (θ) =
∫

Θ

κ(τ) f (θ − τ)dτ, (5.1)

a convolution of the objective f and a smoothing kernel κ , which we choose to be a

Gaussian. Convolution with a Gaussian kernel has several desirable properties, e.g.,

convexity is preserved, it holds that Lg ≤ L f , i.e., the smooth objective is stronger

Lipschitz-bound than f , and the gradient ∇g is Lipschitz-continuous even when ∇ f

is not [209], as is the case on many of our problems (e.g., Fig. 5.3a)). We show

visualizations of Eq. 5.1 in Fig. 5.4.

Algorithm 5 High-level pseudo-code of ZeroGrads.
Input: objective f , surrogate h
Output: optimized parameters θ minimizing f

1: procedure ZEROGRADS(f , h)
2: φ := INIT() ▷ surrogate parameters
3: θ := UNIFORM() ▷ optimization parameters
4: for i do
5: φ = OPTIMIZE1(φ , ESTIMATEGRADIENT(φ , θ f , h))
6: θ = OPTIMIZE2(θ , ∂h/∂θ)
7: end for
8: return θ

9: end procedure

5.3. Our approach 112

5.3.2 Surrogate

The key ingredient, the surrogate h(θ ,φ) : Θ × Φ→ R+
0 , consumes θ (like f and g,

which it emulates), but also takes the tunable parameters φ from the m-dimensional

surrogate parameter space Φ.

We encode our surrogate in a differentiable proxy function of variable form,

which can take the form of polynomials, RBFs or NNs (see Sec. 5.4.4 for examples)

and whose analytic parametrization allows to easily get the surrogate gradient ∂h/∂φ

and the parameter gradient ∂h/∂θ via automatic differentiation. In contrast to linear

methods (e.g., [331; 65; 283]), our continuous surrogate formulation allows us to

perform one or more gradient descent steps on the surrogate and to evaluate the

estimated loss surface at a new position without re-running the forward model.

5.3.3 Localized surrogate loss

Matching h to g across the entire domain Θ might be too ambitious and furthermore

is unnecessary, as most first-order gradient-based optimizers only ever query values

at or around the current parameter θ . Instead, we create a surrogate that is focused

around the current parameters by locally sampling the objective function.

The loss of the surrogate parameters φ “around” θ hence is

l(θ ,φ) =
∫

Θ

λ (ρ,θ)(g(ρ)−h(ρ,φ))2 dρ, (5.2)

where λ is a weighting function that chooses how much context is considered around

the current solution and ρ is from the parameter space Θ. We again choose a

Gaussian with mean θ here, which is not to be confused with the smoothing kernel

κ . Eq. 5.2 illustrates how the surrogate never has access to the gradients of the true

objective – these might not even exist –, but learns self-supervised by only sampling

the (smoothed) loss g.

5.3. Our approach 113

5.3.4 Estimator

Combining the smoothed loss in Eq. 5.1 and the localized surrogate loss in Eq. 5.2,

we arrive at the following expression:

l(θ ,φ) =
∫

Θ

λ (ρ,θ)

([∫
Θ

κ(τ) f (ρ− τ)dτ

]
−h(ρ,φ)

)2

︸ ︷︷ ︸
:=I(ρ,φ)

dρ. (5.3)

We are now interested in the gradient of this expression w.r.t. the surrogate

parameters φ , i.e.,

∂

∂φ
l(θ ,φ) =

∂

∂φ

∫
Θ

I(ρ,φ)dρ =
∫

Θ

∂

∂φ
I(ρ,φ)dρ. (5.4)

The above equality holds, according to Leibniz’ rule of differentiation under

the integral sign, if, and only if, the integrand is continuous in φ and ρ [169]. Our

Gaussian locality weight λ fulfills this and h(ρ,φ) is continuous by definition, as it is

a NN or quadratic potential. Through our previously introduced convolution (Eq. 5.1),

the – originally discontinuous – objective f becomes smooth and hence leads to

the inner integral being continuous in ρ . Leveraging the fact that a composition of

continuous functions also is continuous, we can say that I(ρ,φ) is continuous in φ

and hence use Eq. 5.4 as our gradient estimator:

∂

∂φ
l =

∫
Θ

∂

∂φ
λ (ρ,θ)

([∫
Θ

κ(τ) f (ρ− τ)dτ

]
−h(ρ,φ)

)2

dρ (5.5)

=
∫

Θ

2λ (ρ,θ)
∂h(ρ,φ)

∂φ

(
h(ρ,φ)−

∫
Θ

κ(τ) f (ρ− τ)dτ

)
dρ. (5.6)

Here, the inner integral over τ is conditioned on the outer variable ρ , leading to

a nested integration problem. A general, unbiased solution would estimate the inner

and outer integrals with N and M samples, respectively, where M ∝ N, leading to

quadratic complexity. However, in this special case the function acting on the inner

integral is linear, and the nested estimator thus remains unbiased even for constant N

(see [251], Sec. 5 & Fig. 2).

We now aim to re-arrange Eq. 5.6 into a double-integral of a product, a form that

5.3. Our approach 114

is reliably solvable by the well-known approaches that solve the rendering equation

[304]. We hence write Eq. 5.6 as

∂

∂φ
l =

∫
Θ

∫
Θ

2λ (ρ,θ)
∂h(ρ,φ)

∂φ
h(ρ,φ)dτ−∫

Θ

2λ (ρ,θ)
∂h(ρ,φ)

∂φ
κ(τ) f (ρ− τ)dτ dρ,

(5.7)

where we use the fact that integrating an expression that is independent of the

integration variable (here τ) reduces to multiplication by the volume of the integration

domain, which we here assume to be normalized to unit volume, i.e.,
∫

Θ
dτ = 1.

Now the two inner integrals can be written as one, and factored as

∂

∂φ
l =

∫∫
Θ

2λ (ρ,θ)
∂h(ρ,φ)

∂φ
(h(ρ,φ)−κ(τ) f (ρ− τ))dτdρ. (5.8)

This integral spans the product space Θ×Θ and has the following unbiased

estimator with linear complexity O(N):

∂

∂φ
l ≈ 1

N

N

∑
i

2λ (ρi,θ)

p(ρi,τi)

∂h(ρ,φ)
∂φ

(h(ρi,φ)−κ(τi) f (ρi− τi)) , (5.9)

=
∂

∂φ

1
N

N

∑
i

λ (ρi,θ)

p(ρi)p(τi)
(h(ρi,φ)−κ(τi) f (ρi− τi))

2 . (5.10)

It seems somewhat contrived to go through all the above reformulations to

arrive from Eq. 5.4 at Eq. 5.9. Note, however, that differentiating inside the integral,

enabled by Eq. 5.4, removes the non-linear function acting on the inner integral in

Eq. 5.3 and hence enables us to formulate an unbiased estimator of the smoothed,

localized loss in O(N). This re-formulation is only possible in special cases (here,

for a second-order polynomial acting on the inner integral, see [251] Sec. 4) and

would not be possible for other popular distance measures between h and f , e.g.,

the Kullback-Leibler (KL)-divergence or the Hinge- or Exponential-losses, which

would introduce bias into the optimization due to non-linearities in their derivatives

[49; 216].

5.3. Our approach 115

Algorithm 6 Estimating the surrogate’s gradient
Input: surrogate parameters φ , optimization parameter θ ,

objective f , surrogate h
Output: surrogate gradient ∇φ

1: procedure ESTIMATEGRADIENT(φ , θ f , h)
2: ∇φ := 0
3: for N do
4: ρ,τ := NORMAL(σo), NORMAL(σi)
5: s := (h(ρ,φ)− f (ρ− τ))2

6: ∇φ += GRAD(s, φ)
7: end for
8: return ∇φ/N
9: end procedure

Parameter at 0%
0 1

Parameter at 10%
0 1

Parameter at 35%
0 1

Parameter at 100%
0 1

1

MAE Surrogate Current Parameter Minimum

0

1

0

1

0

1

0

Figure 5.5: A 1D-example with the function from Fig. 5.3a) and our neural surrogate (blue),
which learns a local approximation of the loss (black, MAE) and provides
gradients for the optimization parameter (green). The sampling distribution is
displayed in grey, state is shown at 0%, 10%, 35% and 100% total iterations.

5.3.5 Sampling

For uniform random sampling, the MC estimator in Eq. 5.9 will exhibit substantial

variance, leading to slower convergence and hence longer runtimes. Instead, we

would like to sample in a way that maximizes a sample’s importance and therefore

produces more meaningful gradients for the same sampling budget. Thanks to our

reformulation of the nested integral, it is evident that the integration domain now

is Θ×Θ, and that the magnitude of the gradient – the quantity we would like to

estimate – is determined by three factors: the difference between the surrogate’s

prediction and (smooth) objective f , and the locality terms λ and κ .

While we cannot trivially compute the PDF of the surrogate’s prediction error,

our local surrogate formulation shows that we can reduce the variance by importance

sampling [304] for both locality terms. This again allows us to focus our surrogate

on the regions of the parameter space that matter at the current optimization iteration

while ignoring large amounts of space, which is especially helpful in higher dimen-

5.4. Evaluation 116

sions. The parameter σo of the locality λ determines how far the current solution’s

sampling radius is spread out, while σi determines the amount of smoothing, and is

generally set to 15% of σo (for details, please see Appendix C.1.1). We display the

resulting gradient estimator in Alg. 6.

5.3.6 Summary

In combination, the above elaborations allow us to optimize the objective function

f (θ) through our surrogate’s surrogate gradients ∂h/∂θ . We emphasize that, in

contrast to prior work [121; 233; 89], our surrogate is learned self-supervised, without

any ground truth supervision in the form of pre-computed gradients, and is optimized

on-the-fly, alongside the parameter θ . This is made possible by a low number of

samples which we achieve through our efficient estimators. As such, it allows the

application of our method to systems where only a forward model is given. In the

following sections, we will detail and evaluate some exemplary applications. Further,

we provide a simple, illustrative 1D-example and visualize our learned surrogate loss

over the course of the optimization in Fig. 5.5.

5.4 Evaluation

Our evaluation compares different methods on a range of tasks (see Sec. 5.4.3 and

Appendix C.2for detailed task descriptions): we validate our design choices through

ablations on lower-dimensional tasks in Sec. 5.4.3 and compare against established

derivative-free optimizers on higher-dimensional, real-world tasks in Sec. 5.4.5.

The reason for this is twofold: first, in the higher-dimensional regime, the task

complexity makes it non-evident to see which of the ablated attributes lead to the

method failing, and second, the derivative-free algorithms could solve some of the

lower-dimensional tasks by simply brute-forcing the solution (which is a valid way

of solving the problem, but besides the scope of interest here).

As our objective f , we use the MSE between the current rendered state and

the target, if not otherwise specified. For details on our proxy’s architecture and

hyperparameters, please see Appendix C.1.

5.4. Evaluation 117

5.4.1 Methods

We compare our approach to several ablations and variants, out of which some

correspond to existing published methods. All methods operate in image space only

and do not have access to any ground truth supervision or parameters. We structure

the space of methods by the type of i) smoothing, ii) surrogate, and iii) sampling.

Our full method, Ours, implements Alg. 6: it smooths the loss via convolution with

a Gaussian (Eq. 5.1), uses a neural proxy and draws samples by importance-sampling

the locality terms. We compare our full approach to the following methods and

ablations:

NoSmooth, where we ablate the smoothing convolution (Eq. 5.1) and directly

sample the non-smooth loss.

NoNN, where we replace the NN in the surrogate by a quadratic potential

function of the form (x,1)⊺M(x,1), where, for an n-dimensional problem, M is a

symmetric matrix in Rn+1×n+1.

NoLocal, where we ablate the locality by drawing uniform random samples

from the domain. For unbound domains, we manually set reasonable boundaries.

FD, our implementation of finite differences, with an optimally chosen ±ε in

each dimension.

FR22, which re-implements the approach presented by Fischer and Ritschel

[65], who derive gradients by stochastically perturbing the optimization parameters

θ at every iteration and weighting the resulting loss values by a gradient-of-Gaussian

kernel, effectively creating a linear gradient estimate akin to a stochastic multi-sample

version of Spall [283].

5.4.2 Protocol

The results we report are the median values over an ensemble of 10 independent

runs of random instances of each task. To ensure fairness, all methods are run in

their best configuration. For each run, the parameter initialization and ground truth

(where possible) are randomly re-sampled and the surrogate, optimizer and all other

stateful components are re-initialized from scratch.

5.4. Evaluation 118

Table 5.2: An overview of our method and its ablations and competitors. To the right,
we show the competitors’ relative error ratio at the iteration where our method
achieves 95 % error reduction - i.e, how much others are behind.

Method Smoothing Surrog. h Sampler Rendering Modeling Animation

NoSmooth None NN Gauss 1.2× 3.9× 1.5×
NoNN Gauss Quad. Gauss 8.9× 792.4× 16.3×
NoLocal Gauss NN Uniform 12.3× 613.4× 22.4×

FD None Linear Box 24.5× 654.3× 10.2×
FR22 Gauss Linear Import. 11.0× 323.6× 3.3×

Ours Gauss NN Gauss 1.0× 1.0× 1.0×

5.4.3 Tasks

We validate our method on two sets of tasks: the first set consists of lower-

dimensional tasks from rendering, animation, modelling and physics, all of which

are not trivially amenable to gradient-based optimization due to (partially) discrete

parameter spaces, discontinuous integrals or non-differentiable frameworks, and

serves the purpose of evaluating our approach’s design decisions. We provide a short

description of each task in the following section and refer the reader to Appendix

C.2 for more details on task setup and to Fig. 5.7 for task-specific visualizations.

Additionally, we evaluate how well our method scales to more realistic, higher-

dimensional inverse optimization problems on a second set of tasks in Sec. 5.4.5.

Differentiable Rendering. Discontinuities in rendering arise from the visibility

function that appears inside the integral, in which case the gradient of the integral

cannot be computed as the integral of the gradient. Typical solutions include re-

parametrization or edge-sampling for path tracing [183; 169] or replacing step

functions with soft counterparts in rasterization [237; 179] and use framework-

specific implementations.

CORNELL-BOX We optimize the light’s horizontal and vertical translation and

the axial rotation of both boxes inside the Cornell box. The discontinuities arise

from visibility changes at the silhouette edges of the moving boxes and light.

BRDF Here, we optimize the material properties (RGB reflectance and index

of refraction (IOR)) of a material test-ball illuminated under environment illumi-

5.4. Evaluation 119

nation. Optimizing properties of ideal specular objects, such as their IOR, often is

challenging even for modern differentiable path tracers [130]. Our method does not

make any assumptions on the underlying function, so we can successfully optimize

these cases, too.

MOSAIC In this task, we simultaneously optimize the vertical rotation of 320

cubes to match a reference. Again, the discontinuities arise for pixels at the silhouette

edges that change their color discontinuously with the occluding cube’s rotation.

Procedural Modeling. Procedural modeling mainly uses nodes from two

categories, filtering nodes (that are differentiable by construction) and generator

nodes, that operate on discrete parameters, such as a brick texture generator. Node

relations often are highly non-linear due to complex material graphs and their

interplay with other pipeline parameters. Moreover, the connections inside the

nodegraph are a combinatorical problem with a highly discontinuous loss landscape.

While previous research has made great progress in this field [121; 92; 275; 122; 166],

it still often either involves lengthy, framework-specific pre-training, or relies on the

existence of differentiable material libraries.

WICKER A procedural modelling scenario where we simultaneously optimize

the parameters of a node graph that creates a woven wicker material. We optimize

the number of horizontal and vertical stakes and the number of repetitions across the

unit plane.

LED Given a target setting, we optimize each LED panel in a digital display to

either be on or off. The display consists of 12 panels, each with 28 elements, leading

to a 336-dim. binary problem.

NODE-GRAPH In this task, we directly optimize the connectivity of a material

graph - a mixture of a combinatorical and procedural modelling problem. We encode

all possible edges for a given set of nodes in a connection matrix and optimize the

matrix entries. If an entry rounds to 1, the corresponding edge is inserted into the

node graph, else removed. Our test graph has 8 nodes (several inputs and outputs

each, 24 valid connections and matrix entries). Some graph edges constrain each

other, e.g., when a shader node already is connected, a new connection will not result

5.4. Evaluation 120

in an updated image, making this an even more inter-linked problem.

Animation. Accurate animation often relies on differential equations to solve

the underlying physics equations which govern a character’s behaviour or movement.

Oftentimes, the forward model of such an animation is inherently discontinuous (for

instance, due to collisions) while at the same time, the underlying physics solver is

not differentiable, as its output is the solution of an integral approximated by discrete

sampling locations (the time steps). This is similar to the problem encountered in

differentiable rendering: if the integrand (e.g., the time at which a force starts acting)

is discontinuous, it is incorrect to simply differentiate the integral estimate to get a

gradient estimate (see Appendix Fig. C.4).

ROCKET A physical simulation where we optimize the discrete event time at

which a rocket’s engine must be turned off in order to reach a certain target point.

We simultaneously optimize 10 rockets flying in parallel. As the forward model

is solved with a finite number of time steps, a small change does not necessarily

translate to a different outcome, leading to zero gradients almost everywhere.

GRAVITY This task runs a physics solver to infer the collision behaviour of

three cubes that are dropped onto each other. If optimized correctly, the cubes

will form a tower after being dropped. We optimize the two upper cubes’ initial

translation and their coefficients of restitution, the “bounciness”, which we provide

as the input to the solver.

5.4.4 Results

We display the results of all methods listed in Tab. 5.2 in Fig. 5.6, with one subfigure

per task, and show a quantitative analysis in the right part of Tab. 5.2. We group

the results into rendering (CORNELL BOX, BRDF, MOSAIC), modeling (WICKER,

NODE-GRAPH, LED) and animation (ROCKET, GRAVITY), which correspond to the

three rightmost columns in Tab. 5.2 and the rows in Fig. 5.6, respectively.

From the convergence plots in Fig. 5.6, it becomes evident that NoLocalworks

in select cases, but often struggles to find the correct solution, especially where the

domain is higher-dimensional (e.g., MOSAIC), as a uniform random sampling of the

parameter space introduces substantial variance in the gradient estimates. Similarly,

5.4. Evaluation 121

noSmooth noLocal FR22FD Ours FullnoNN

Im
g.

 M
SE

0.
0

1.
0

Cornell-Box

0 18Wall Time [s]

Mosaic

0 610

BRDF

0 220Wall Time [s] Wall Time [s]

Im
g.

 M
SE

0.
0

1.
0

Node-Graph

0 64

LED

0 120

Wicker

0 25 Wall Time [s]Wall Time [s]Wall Time [s]

Summary

0 1.0

Gravity

0 90

Rocket

0 20

Im
g.

 M
SE

0.
0

1.
0

Wall Time [s]Wall Time [s]Wall Time [s]

Figure 5.6: We show convergence plots of all methods (wall-clock time in seconds, method
colors are consistent with Tab. 5.2) for all tasks, ranging from differentiable
rendering (top row) over procedural modelling (middle row) to animation and
simulation (bottom row). For all experiments, we let our method run until
convergence (the dashed vertical line in each subfigure) and then allocate twice
as much time for the other methods to converge. All results are reported across
an ensemble of 10 independent runs for all methods. For convenience, we
show a summary across all tasks in the right bottom subfigure (mean across all
methods, normalized and resampled). For task-specific visualizations, please
see Fig. 5.7.

NoNN is challenged in higher-dimensional cases and does not converge reliably,

which we attribute to the reduced expressiveness of the quadratic potential. However,

this shows that for simple tasks (e.g., CORNELL-BOX), the proxy does not need to be

overly complicated. Finite Differences (FD) works well and makes steady progress

towards the target, but does not scale well to higher dimensions, as an n-dimensional

5.4. Evaluation 122

problem requires 2n function evaluations for a single gradient step (see the wall-time

plots in Fig. 5.6 and Tab. 5.1). FR22 works reliably on all tasks, but often converges

slower than our method. Surprisingly, we find that ablating the inner smoothing

CBoxGravity Node-Graph

LEDWicker

Init Init Ours Reference Init Ours Reference

Init Ours Reference Init Ours Reference Init Ours Reference

Ours ReferenceInit

Init

Init

Init

Init

Init

BRDF

Gravity

Figure 5.7: Visualizations of instances of our tasks. We visualize the initial configuration
in the left column of each subfigure, and our outcome and the reference in the
middle and right column, respectively. For our method’s convergence behaviour
on these tasks, please see Fig. 5.6.

operation in NoSmooth only slightly impedes performance (ca. 2x), which we

partly attribute to the implicit smoothing introduced by the surrogate fit. In almost all

cases, Ours works best and faithfully recovers the true parameters. The overhead of

our method compared to its competitors is small: for smoothing, it suffices to slightly

perturb the current state, i.e., no additional evaluation of f is required. The NN query

is very efficient as it can be parallelized on the GPU, and the surrogates are relatively

shallow (for implementation details see Appendix C.1), providing Ours with the

best quality-speed relation, as is evident from the right bottom subfigure in Fig. 5.6,

where we show the (normalized and re-sampled) mean performance of all methods.

5.4.5 Higher Dimensions

We here evaluate our method on higher-dimensional problems from the inverse

rendering literature and compare our approach against the established derivative-

free optimizers genetic algorithms (GA) [116], simulated annealing (SA) [152],

5.4. Evaluation 123

ReferenceOursSA GA SPSA FR22Init CMA-ES

n/a

Figure 5.8: We show an equal-sample comparison (i.e., the same budget of function evalua-
tions) for the task of optimizing a 256×256×3 texture. CMA-ES cannot be run
on this example due to its quadratic memory complexity causing out-of-memory
errors on our 64 GB RAM machine.

ReferenceOursSA GA SPSA FR22Init CMA-ES

Figure 5.9: We show an equal-sample comparison for the task of optimizing the 35,152
weights of a MLP such that it encodes digits from MNIST [162].

simultaneous perturbation stochastic approximation (SPSA) [283] and CMA-ES.

Due to the high dimensionality of these experiments, we found it necessary to

increase the surrogate capacity and the gradient batchsize (for implementation details,

please see Appendix C.1). All results we show are equal-sample comparisons, i.e.,

achieved after the same number of function evaluations, disregarding the fact that

CMA requires significantly (multiple times) more runtime than all other approaches.

To avoid clutter in the main manuscript, we show the outcome of our ablated methods

on theses tasks in Appendix Fig. C.2.

TEXTURE First, we optimize the 256×256 RGB pixels of a texture in Fig. 5.8,

ReferenceOursSA GA SPSA FR22Init CMA-ES Di�. Rendering

Figure 5.10: We show an equal-sample comparison for the task of optimizing the 3D posi-
tions of a tessellated sphere with 2,562 vertices to match a rendered reference
shape. “Diff. Rendering” uses the analytical gradients from Nicolet et al. [215].

ReferenceOursSA GA SPSA FR22Init CMA-ES

Figure 5.11: We show an equal-sample comparison for the task of optimizing a 1,024-dim.
heightfield such that the resulting caustic resembles the reference image.

5.4. Evaluation 124

a relatively simple task with a smooth cost landscape and no correlation between the

optimization variables. Our surrogate gradients lead to a successful optimization

outcome, while the derivative-free optimizers GA and SA fail to converge due to

the high problem dimensionality. CMA cannot be run on our 64GB RAM machine

because of the quadratic memory requirements of the covariance matrix. Both SPSA

and FR22 make progress towards the target, but require more time to converge.

MLP To increase the correlation between the optimization variables from the

previous task, we repeat a similar experiment in Fig. 5.9, where we use our method

to optimize the weights of a MLP such that it overfits single digits from the MNIST

[162] dataset, i.e., learns a mapping from continuous 2D coordinates in (0,1) to a

monochrome color value at the corresponding pixel location. The results are similar:

our method has already converged, while SPSA and CMA make progress but require

more function evaluations, and both GA and SA do not converge at all. Interestingly,

FR22 does not converge either. This is in line with recent findings that show that

perturbation-based methods do not perform well on emulating backpropagation in

neural networks [209; 32; 19].

O
ur

s
FR

22
SP

SA
G

A
SA

C
M

A

Figure 5.12: We sample the latent space of our trained variational auto-encoder (VAE)
and show a variety of style transformations (rows), enabled by the spline
formulation, on three digits per MNIST class. The first row displays the output
of the spline renderer on which the surrogate operates.

MESH Next, we optimize the 3D position of 2,562 vertices of a triangle mesh,

as in Nicolet et al. [215], to match a reference (Fig. 5.10). This problem is already

5.4. Evaluation 125

much harder, as the vertices are interlinked and the loss landscape exhibits disconti-

nuities due to the rasterization process. On this task, GA and SPSA fail to converge to

the correct result, while SA does not move from the initial configuration. In contrast,

CMA, FR22 and Ours find the correct solution, with FR22 and Ours achieving the

lowest final optimization errors (0.0018 and 0.0013, respectively). For completeness,

we also show the differentiable rendering solution proposed by [215].

CAUSTIC In caustic optimization, a classic task from inverse rendering [225;

272; 153], the goal is to optimize an initial height-field such that it refracts incoming

light into a caustic that resembles a provided reference image. While previous

systems have gone to great effort to accurately capture the intricate behaviour of the

refracted light, we use a simple rasterization-based renderer inspired by [320] (for

details see Appendix C.2). Our heightfield is parameterized by a cubic B-Spline

with resolution 1,024. This example is interesting as the optimization variables have

a highly non-local influence on the observed image pixels. We show the resulting

optimization outcomes in Fig. 5.11 and observe that all traditional gradient-free

optimizers fail to correctly recover the target image. Again, SPSA and FR22 achieve

a caustic that roughly resembles the reference, while our method achieves a plausible

outcome.

SPLINE GENERATION Finally, we use our method to train a generative model

on a non-differentiable task. Here, we use our surrogate gradients to train a VAE

[148] that encodes digits from the MNIST [162] dataset and outputs the support

points of a spline curve, which are then rendered with a non-differentiable spline

renderer. As in all tasks, we operate in image space only, so we cannot simply

backpropagate through the spline renderer, but must query our surrogate for gradients.

This again is a very high-dimensional, non-local and interlinked problem, as all

optimization variables (the NN weights) directly influence the spline’s final support

points. For details on the training and model architecture, please see Appendix C.2.

In Fig. 5.12, we sample the latent space of the model after training. We render the

generated spline in different styles, which can easily be applied in post-processing

due to the control-point formulation. As is evident from the figure, our method is the

5.4. Evaluation 126

only approach that achieves an output that resembles actual digits across all numbers,

with FR22 achieving satisfactory results on simple cases (1, 3, 5, 7), and the other

derivative-free optimizers failing completely. To our knowledge, this is the first

generative model that is trained on a non-differentiable task, which again highlights

the generality of our proposed approach, ZeroGrads, and gives rise to an exciting

avenue of future research.

5.4.6 Gradient Variance Analysis

While our method works well in all the previous tasks, its benefits are most pro-

nounced when the loss landscape exhibits stochasticity or noise, e.g., in the MLP

and SPLINES tasks. We hypothesize that this can be explained by the centerpiece

of our approach, the neural proxy: in contrast to FR22 and SPSA, ZeroGrads uses

a neural network as proxy function, whose state acts as hysteresis and endows our

method with a certain inertia, limiting the estimated loss landscape’s spatiotemporal

change by the network’s adaptability. This behaviour is further reinforced by the

spectral bias of neural networks [248; 295], which has been shown to encourage the

learning of low-frequent, Lipschitz-continuous functions over those characterized by

rapid changes.

FR22 and SPSA, in contrast, re-build a (linear) gradient estimate during ev-

ery iteration of the optimization, effectively ignoring information about the loss

landscape from previous iterations. As this gradient estimate is a stochastic approx-

imation, it will exhibit noise and variance, which highlights the main difference

between the discussed (gradient-based) approaches: while SPSA and FR22 estimate

the parameter gradient ∂θ (subject to variance), ZeroGrads estimates the surrogate

gradient ∂φ , but analytically computes the parameter gradient ∂θ . This allows us

to move the higher-variance estimate into the neural network’s parameter update,

where the estimate’s noise is smoothed by the aforementioned hysteresis.

To analyze this behaviour, we plot the variance of the gradient-magnitude over

the course of the optimization in Fig. 5.13 for all three1 gradient-based optimizers

1We exclude finite differences from this comparison due to its intractable per-iteration cost in
higher dimensions.

5.4. Evaluation 127

1 1

0

1

0

MLP

Caustic Splines

Mesh

Iterations Iterations

0

1e
-4

1e
-2

1e
-5

1e
-1

1e
-0

1e
-6

1e
-4

1e
-2

1e
-8

1e
7

1e
9

1e
3

1

0

Ours

SPSA

FR22

Figure 5.13: We plot the variance (smoothed for ease of visualization) of the gradient
magnitude over the course of the optimization. Note that the scales are vastly
different, as denoted on the left axis. Our method consistently produces
gradients with lower-variance magnitude, which we attribute to the neural
proxy’s state and smoothness, resulting in less gradient noise.

SPSA, FR22 and Ours. The vastly different scales on the y-axes of each subplot

confirm our hypothesis: the variance in the gradient-magnitude of our method is

consistently orders of magnitude lower than that of the other approaches. While this

does not allow reasoning about the correctness of the derived gradients, it explains

why our approach outperforms the competitors in the provided examples.

5.4.7 Comparison to specific solutions

There exist many specialized solutions that enable gradient computation in graphics,

and a full study of all is beyond the scope of this work. We compare qualitatively to

two of these methods, rendering (Fig. 5.14) and procedural modelling (Fig. 5.15),

where the common theme is that our neural surrogates are capable of optimizing

their specific problems as well, and sometimes even go beyond. In Fig. 5.14, top row,

we show that we can optimize a material’s IOR, a feature for which backpropagation

through detached sampling has not yet been implemented in Mitsuba. As our method

5.4. Evaluation 128

Init Mitsuba Ours Reference

Mitsuba
Ours

Mitsuba
Ours

Figure 5.14: Comparison with Mitsuba 3 [130] on the BRDF and CORNELL-BOX tasks,
top and bottom row, respectively. Note that the incorrect IOR in the top row
is due to Mitsuba not yet implementing this feature instead of failing during
optimization (see Sec. 5.4.7).

only needs a forward-model, we can simply combine Mitsuba’s forward path tracer

with our surrogate gradients and thus are able to optimize the IOR as well. In

Fig. 5.15, we optimize a node graph towards the target patterns, using a mixture

of VGG and MSE loss, which nicely shows our surrogate’s flexibility w.r.t. to the

objective f . Moreover, our method also works in extreme parameter ranges, as is

evident from the bottom row in Fig. 5.15, where the pre-trained proxy from Hu et al.

[121] breaks due to the parameter value being out of the range it encountered during

training. In summary, although our method might sometimes come at the expense

of higher compute or variance (e.g., compared to Mitsuba in Fig. 5.14, see the

convergence plots to the right), the strength of our approach lies in its generality, i.e.,

in that it can be applied to arbitrary forward graphic models, and that it successfully

optimizes high-dimensional, interlinked problems.

5.4.8 Limitations and Failure Cases

Our method inherits the limitations of gradient descent, namely that it can get

stuck in local minima (although we do our best to avoid this via the smoothing

convolution), move slowly in regions of shallow slope (see the experiments on the

Rosenbrock function in Appendix Fig. C.1) and that it introduces additional hyper-

parameters (Appendix C.1.1). Additionally, our method “wastes” samples during an

5.4. Evaluation 129

Initialization Ours ReferenceHu et al. [2022a]
Figure 5.15: Comparison between Ours and Hu et al. [121] (result and reference taken from

their publication). In the lower row, their pre-trained brick generator fails, as
the parameter lies outside the training domain.

initial warm-up phase, in which the (initially random) network weights first adapt

to the loss landscape. Moreover, while our derived gradients have lower variance

than competing approaches (Fig. 5.13), they have higher variance than analytical

gradients and therefore typically under-perform relative to problem-specific methods,

where they are available (see the convergence plots in Fig. 5.14). Finally, on lower-

dimensional discrete problems, it can potentially be faster to simply brute-force the

solution by trying all possible combinations, akin to what genetic algorithms would

do with a high-enough sample budget. However, this quickly becomes infeasible as

dimensionality increases.

In addition, we show a failure case in Fig. 5.16. The task is inspired by PSDR-

Room [323; 211] and the optimizer is asked to replicate a scene layout and materials

from a single photograph. For each piece of furniture or shrubbery, the optimizer can

make a discrete choice from 10 objects (left column in Fig. 5.16) and additionally

adapt their continuous 3D position in the scene and the wall’s color (right column in

Fig. 5.16). We optimize MSE in the single-stage, single-resolution setting. While

successful in the type-only setting, ZeroGrads fails to correctly optimize both type

and position in the right column of Fig. 5.16. We assume this is because the optimizer

must cycle through a number of objects before encountering the correct one, while

5.5. Conclusion 130

R
ef

er
en

ce

Optimize type & positionOptimize type

In
it

ia
liz

at
io

n
R

es
ul

t

Figure 5.16: A limitation of our method: when the loss landscape is too complex (right
column: mixture of plateaus and discrete spaces), the proxy cannot encode it
accurately and the optimization stalls in a local minimum.

simultaneously working in discrete and continuous space, and moreover dealing

with plateaus in image-space which stem from the objects not overlapping their

reference counterparts. Not even the smoothing operation can make this task easier,

as the optimizer has the opportunity to reduce the image error by simply pushing the

objects out-of-frame (as is happening here) and then falls into a local minimum from

which it cannot recover. We conclude that more research is needed in this direction,

e.g., through self-adapting proxy configurations or advanced hybrid approaches.

5.5 Conclusion
We have proposed ZeroGrads, a method for practical computation of surrogate gradi-

ents in non-differentiable black-box pipelines, as are found across many graphics

domains, ranging from rendering over modelling to animation. Our key ideas are the

5.5. Conclusion 131

smoothing of the loss landscape, a local approximation thereof by a NN, and a low-

variance estimator based on sparse, local sampling. We have favourably compared to

several ablations and published alternatives and shown results for a wide variety of

tasks. Additionally, our neural surrogate allows us to transform the noisy gradient

estimate into an update on the network’s parameters, where the noise is smoothed by

the network’s hysteresis. We therefore can show that our surrogate gradients scale to

high dimensionality, where traditional gradient-free optimization algorithms often

do not converge.

In future work, we plan to further explore the interplay of the inner surrogate

loss and the outer optimizer and to find ways to automatically determine the required

surrogate network’s complexity. Moreover, it would be interesting to leverage the

fact that our surrogate provides a continuous model of the cost landscape, for instance

by lookahead-training or approximate second-order methods.

Most of the things that enable our approach are known in the optimization

community that routinely uses proxies and surrogates. Yet, these ideas are rarely

used in graphics, where specific solutions were developed and rarely compared

against what the optimization literature offers. Our work combines graphic-specific

features (e.g., MC-estimating the gradient, sampling the objective through simply

rendering) and graphics-inspired improvements (such as variance reduction through

importance sampling) to match requirements of graphics with general optimization.

Chapter 6

Discussion and Outlook

The previous three chapters have presented the core topics of this thesis: efficient,

inverse rendering and the estimation of the therefore necessary gradients. However,

as initially remarked, the mere availability of an efficient optimizer or gradient does

not guarantee a successful optimization outcome - in fact, as remarked by Metz et al.

[192] and listed in Chapter 2, there is a plethora of reasons for which optimization

still could diverge, such as incorrect or undefined gradients or plateaus in the cost

landscape. This section will thus illustrate limitations of current techniques, present

potential remedies and shine light on new directions and angles on inverse and

differentiable rendering.

6.1 Limitations of the discussed methods
Hyperparameter sensitivity. For both gradient estimation approaches presented in

this thesis, PRDPT and ZeroGrads, the hyperparameter σ , which denotes the standard

deviation of the Gaussian sampling distribution, plays a crucial role. While correct

choice of the sampling radius is also an issue for the more traditional optimizers

finite differences and SPSA, for the case of PRDPT and ZeroGrads it is of particular

importance since it additionally denotes the blur radius that is used to remove

plateaus. Too little blurring will not sufficiently remove plateaus for convergence

(since we will always sample parameters on the plateau), and too much blurring will

lead to oversmoothing, which could potentially lead to divergence.

To exacerbate this problem, σ should ideally vary per dimension: consider the

6.1. Limitations of the discussed methods 133

case of optimizing the number of bricks in a brick texture alongside their color. The

number is a discrete parameter in the interval [1,k], with k≫ 1, while the RGB color

is limited to the [0,1] interval. Both PRDPT and ZeroGrads address this problem via

normalization of the ranges, which however often is non-trivial and non-intuitive,

such as in this case here. Even when normalization can be easily applied, there are

no guarantees that equal perturbations along the dimensional axis result in equal

image-space appearance variations: some parameters might be hidden by occluders

and thus do not influence the image-space error at all, while others, such as light

sources, will exhibit strong, non-local influence for even minor perturbations.

The optimal choice of perturbation radius, or per-dimension σi, thus is an open

problem. A simple and effective solution is the one-at-a-time (OAT) method [44; 42],

where the optimal per-dimension sampling radius is determined iteratively: vary σi

by a small perturbation εi and see if the resulting image changes - if not, increase εi.

However, this strategy, while effective, is not efficient – in fact, it is prohibitively ex-

pensive, since an n-dimensional problem will require at least 2n function executions

to determine σ , and this is only the precursor to the gradient estimation step, which

will require additional renderings. While it is not inconceivable that this might still

pay off in total optimization time if the found “optimal” σ sufficiently improves the

subsequent gradient estimate, this strategy seems naı̈ve and provides an interesting

starting point for future research, with links to parameter sensitivity analysis.

Gradient sparsity. An additional point of improvement lies in the way in which

the perturbations are rendered from parameter- into image-space. There exist two

possibilities: in the per-image variant, the entire image is rendered with a single

perturbation, and several images are combined to achieve a blurred average image; in

the per-pixel variant, only one image is rendered, but each pixel’s color is rendered

under a random perturbation of the optimization parameter (Fig. 6.1 shows an

example using Gaussian perturbations), leading to a more evenly space-out parameter

influence.

However, per-pixel variations are not always straightforward to imple-

ment and parallelize over – existing frameworks such as NVDiffRast or

6.1. Limitations of the discussed methods 134

Mitsuba assume a relatively static scene definition in their rendering calls.

per-image per-pixel

Figure 6.1: Different parameter perturbation
techniques (columns) and random
seeds (rows) for the square’s ini-
tial 2D position (top row).

Both PRDPT and ZeroGrads therefore

use per-image perturbations for ease of

implementation and computational effi-

ciency, which leads to competitive wall-

time optimization performance. How-

ever, as becomes evident from the left

column in Fig. 6.1, per-image pertur-

bations lead to less well approximated

blur (Gaussian here), and therefore to

sparser gradients, which result in infe-

rior optimization performance. Prelim-

inary toy experiments conducted after

completion of the work have confirmed

this behaviour – however, it is unclear

how per-pixel perturbations would be re-

alizable for the arbitrary graphics mod-

els discussed in Chapter 5 due to their

potential black-box nature. An efficient

way of realizing such per-pixel perturbations on modern graphics pipelines would

therefore benefit optimization convergence.

Uncertainty estimation. For all three presented approaches, the sampling patterns

during training and optimization were chosen to either be random uniform across

the training set (Chapter 3) or from the Gaussian distribution and its derivatives

(Chapter 4, Chapter 5). The samples therefore were placed in space without taking

into account how well the current parameters perform, and how much we know

about their neighbouring regions. In a follow-up work to Metappearance, Liu et al.

[174] show that one can meta-learn the sampling pattern during BRDF acquisition

to improve the performance of a subsequent (neural) BRDF model by orders of

magnitude. In a similar spirit, Ansari et al. [7] and Goli et al. [85] show that

6.2. Limitations of current inverse rendering setups 135

incorporating sample uncertainty improves model estimation. It therefore stands to

reason that one could incorporate the uncertainty of the current state estimate into

the sampling pattern of a (variational) optimizer to improve convergence, by placing

samples in (local) regions where the current fit deviates most from the underlying

cost landscape, i.e., is not yet sufficiently accurate. Such sampling schemes could

additionally help to mitigate the problems that are introduced in higher dimensions

due to added noise and estimator variance.

Disentanglement of smoothing. In Chapter 5, our experiments have shown that we

need to increase our surrogate’s capacity for learning the loss landscape on higher

dimensional problems. This is no surprise, as a bigger network can capture more

intricate and higher-dimensional (non-linear) relationships. However, the current

surrogate models have been hand-designed in an empirical trial-and-error process.

While we have found configurations that work across problems (one for low- and one

for high-dimensional problems, respectively), as of yet, there is no clear intuition on

how complex the surrogate needs to be for an arbitrary new optimization problem.

Additionally, this problem transcends mere fitting capacity and is interlinked with the

employed smoothing: choosing a higher-capacity surrogate will lead to less low-pass

filtering, resulting in higher frequencies being present in the learned loss landscape

(the same goes for all frequency-increasing techniques, e.g., positional encoding

[193] or Fourier Features [295]), hence diminishing the smoothing properties of the

network and in turn requiring more Gaussian smoothing. While research from core

machine learning has investigated the theoretical required network capacity for a

certain fitting quality [229; 274], it is unclear how one would disentangle the actually

achieved smoothing from the smoothing via Gaussian convolution. Disentangling

these properties could be interesting for the broader community and also help with

the aforementioned sensitivity to the blur radius σ .

6.2 Limitations of current inverse rendering setups

Pixel-wise loss functions. A problem that transcends the scope of this thesis and is

commonly found in inverse rendering setups is the use of pixel-wise loss functions

6.2. Limitations of current inverse rendering setups 136

such as the mean absolute or square error. In fact, the use of these losses is what

creates plateaus in the cost landscape and motivated Chapter 4 in the first place.

Since they compare the current state and the reference pixel-wise, they are unable to

capture long-range spatial dependencies, necessitating the use of plateau-reduction or

blurring techniques. As we have seen, plateau-reduction can either operate in image-

space, using, e.g., image blur kernels or optical flow [322], or in parameter-space

(Chapter 4, Chapter 5, [47]), often at the expense of additional renderings.

An additional, little-discussed remedy to plateaus is the optimization in a

different basis. Instead of optimizing in pixel-space, we could optimize in a novel

space that is free from plateaus. One idea would be the activation space of a neural

network, which is by design smooth. In this setting, the network consumes the

current image and the reference, and the optimizer would act based on the difference

between the produced features. The challenge is to find a latent- or feature-space that

accurately reflects small details (e.g., the pixels of a texture) without over-smoothing,

while still being free of plateaus. A promising direction could be the attention-values

computed in vision transformers (ViTs), which have been shown to correlate well

with semantic- and positional image information [289] and which, by design of the

attention mechanism, capture global image information [303] as well as high-level

features, suitable for, e.g., material selection [93; 69; 273]. While in vanilla ViTs

these features suffer from a lack of resolution due to the ViT’s relatively coarse

patchify-operation and input resolution, recent work has found ways to mitigate this

via additional computations [5; 70] or architectural changes [267; 27].

A more fundamental problem with image-space approaches is that they can

only optimize what is being rendered on the screen, and have no straightforward way

of differentiating “hidden” parameters that do not influence the visible image, for

instance due to occlusions. Extending such approaches to hidden parameters while

retaining their smoothness would be an interesting direction for future research with

significant impact potential.

Specialized optimizers. Additionally, little attention has been paid to using opti-

mizers that are specifically designed for inverse rendering. The de-facto standard,

6.3. New directions for inverse rendering 137

Adam [149], has been designed for neural network training – it is thus not obvious

that it is also the optimal choice for inverse rendering. In fact, Ling et al. [173] point

out one of Adam’s shortcomings by showing that its per-parameter normalization

does not preserve rotation equivariance. A promising research area would therefore

be problem-dependent optimizers in inverse rendering that take advantage of their

specific sub-problem’s characteristics for improved convergence.

As an example, one could conceive an optimizer specifically designed for 3D

Gaussian splatting (3DGS). In addition to regularization over time, as is currently

done by Adam, such an optimizer could take the spatial correlation of the optimiza-

tion variables (the Gaussians) into account when normalizing or propagating the

gradients: Gaussians that lie closely together in 3D space will likely receive similar

gradients, while additional spatial (gradient) filtering could be done post-projection

in the 2D image plane. Similarly, the Gaussian’s lower spherical harmonics (SH)

bands, encoding non-local illumination, are not likely to change with high frequency;

something the optimizer additionally could exploit. As proposed by Chandra et al.

[34], one could even stack such optimizers, or meta-learn their free parameters over

a range of 3DGS reconstruction tasks.

The above points, while only giving rough outlines of potential improvements,

make it evident that current inverse rendering pipelines still show significant room for

improvement. The following section will outline more exotic directions for inverse

rendering which markedly deviate from the currently employed methods.

6.3 New directions for inverse rendering

Inverse rendering as RL problem. In reinforcement learning (RL), a learner

(or agent) can interact with the world through a set of actions and observe the

effect of these actions on its environment over time. The learner’s goal is to take a

sequence of actions which maximize an expected reward. Instead of the traditional,

gradient-based optimization, we could frame iterative optimization as a RL problem

by choosing the actions to be parameter updates and formulating the reward as

the similarity between current rendering and target image. This formulation has

6.3. New directions for inverse rendering 138

the significant advantage that in RL, the loss function or forward pipeline need

not be differentiable. Instead, the so-called policy-gradient is formulated via the

REINFORCE estimator [318], expressed as

∇θ Eπ∼Pθ
[R(π)] = Eπ∼Pθ

[(∇θ logPθ (π)) ·R(π)] (6.1)

≈ 1
N

N

∑
i
(∇θ logPθ (π

i)) ·R(π i) , (6.2)

where θ is the optimization parameter, π denotes a trajectory of chosen actions

over time, R(π) is the total combined reward for this trajectory, and Pθ (π) is the

trajectory’s probability. Importantly, this formulation does not depend on the gradient

of the reward function w.r.t. θ , which – in the case of differentiable rendering or

a non-differentiable loss function – we might not be able to compute, but instead

constructs an unbiased Monte Carlo estimator of the gradient via separate evaluation

of the sampled trajectories π i [318; 271]1.

Indeed, Pinto et al. [238] show that this trick can be leveraged to optimize vision

models to improve on non-differentiable metrics such as average recall, while Li et al.

[167] exploit the REINFORCE estimator to optimize an inverse procedural material

model with a non-differentiable graph renderer in the pipeline.

The problem with RL-based approaches is their reliance on a fixed problem

domain or parameter structure, for instance, the fixed number of graph parameters in

[167] or the fixed number of NN weights in [238]. However, a perfect “differentiable

rendering agent” would need to operate on unstructured, arbitrary domains and

variable-length input data, e.g., the first three (of n) parameters could be the diffuse

component of an optimized BRDF, the RGB emission values of a light source or

the 3D position of a piece of furniture. Handling such domains in differentiable

rendering is non-trivial; a potential solution could take inspiration from natural

language processing (NLP), where RL has successfully been used [223] to fine-tune

large transformer models (e.g., ChatGPT) which operate on similarly unstructured

data and general-purpose domains.

1From Eq. 6.2, it becomes evident that the gradient estimator proposed in PRDPT (Chapter 4) can
be interpreted as a special case of the REINFORCE estimator.

6.3. New directions for inverse rendering 139

Oracle rendering. Extending this idea, another novel direction could be the use of a

“differentiable rendering oracle” in the form of a large vision-language model (VLM)

such as PaliGemma [23] or LLaVA [177]. This would allow combining image-

and natural language information: the oracle would consume the current rendering

and the reference image (or potentially just the difference image), as well as the

current set of parameters and a prompt telling it to “vary the parameters to reduce the

difference between the images”. The big advantage of this proposal is that VLMs, by

design, can work with the unstructured, variable-length input sequences encountered

in general-purpose differentiable rendering. The language component of the input

could additionally inform the VLM about the purpose of each parameter (e.g., “θ0 is

the intensity of the light source, [θ1,θ2,θ3] its position, ...”). Additionally, the priors

such models have learned during pre-training on gigantic datasets should be able

to guide the optimization towards the correct parameters. It is further conceivable

that such a model would have access to a rendering API, e.g., through Blender’s

Python interface, and therefore be able to self-improve by proposing a new set of

parameters, rendering the image that corresponds to this new set of parameters, and

then basing subsequent proposals on the quality or error of this current proposition.

Finally, the use of VLMs as oracles would come with the additional benefit of the

aforementioned smooth optimization space.

This idea could combine advances in NLP and autoregressive techniques, such

as chain-of-thought prompting, with the graphics- and optimization community. It

opens up several underlying research questions, such as which model would perform

best on such a task, how the optimal prompt should be designed, whether one

could fine-tune such a model for differentiable rendering, and what conditioning

information would be most helpful.

Finally, both proposed ideas, RL and oracle rendering, could also be used in

a hybrid scheme, where we either first use one of the techniques in a coarse pre-

optimization to find a suitable initialization followed by precise, gradient-based

methods, or alternate between the techniques and gradient-based methods in turns to

progressively refine the initial solution.

Chapter 7

Conclusions

Fast training of deep graphics assets and successful optimization of inverse rendering

scenarios are integral parts of modern computer graphics and the graphics research

community. This thesis has presented three works that address commonly arising

problems in these domains. The following short summaries will recapitulate on the

respective works and outline their importance for real-world applications.

Metappearance

In Metappearance, we presented a novel training paradigm for visual appearance

networks by using meta-learning to train fast, efficient and accurate neural repre-

sentations. In a careful study of different training paradigms, we found our trained

networks to perform on-par with “traditionally” trained, over-fit networks that take

orders of magnitude more training iterations, while at the same time retaining the

generality and inference speed of general networks. Metappearance further implicitly

encourages data scarcity, allowing our models to perform at indistinguishable visual

quality while using 99% less data, which could enable distributed architectures

or streaming scenarios and subsequently enable the use of deep graphics assets in

applications that involve user interaction and feedback. Moreover, the introduction

of meta-learning as a form of ”advanced optimization” into the graphics community

could be applied to not only the (neural) model itself, but to arbitrary parts of the

pipeline, as our follow-up work on meta-sampling [174] has shown.

141

Plateau-Reduced Differentiable Path Tracing

The subsequent chapter in his thesis addressed the problem of plateaus in inverse

rendering. We show that our developed variational formulation can achieve conver-

gence on problems with intricate, global light transport that previous methods did

not converge upon. We find that constructing these examples is surprisingly straight-

forward, and they might very well occur in real-world inverse rendering scenarios,

e.g., due to occlusion in autonomous driving and robotic vision, or discontinuous

contacts in path planning and navigation scenarios. Our developed formulation is

easily applicable to these scenarios, agnostic to the platform or underlying rendering

algorithm, and requires only minimal modifications in form of a few lines of code. In

follow-up work, this approach has been applied to other sub-fields in light transport

research [47] and extended to second-order information [71].

ZeroGrads: Learned Local Surrogate Losses

In the third work presented in this thesis, we introduced the concept of a learned,

local neural surrogate of the cost landscape, whose gradients can be used to drive an

optimization scenario. Importantly, our algorithm does not make any assumptions

about the underlying forward model or graphics pipeline; it instead supervises the

surrogate learning via point-samples of the cost landscape, to which we fit a local

neural network. This network is optimized on-the-fly, alongside the optimization

parameter, and can easily be differentiated using readily available automatic dif-

ferentiation libraries. Due to the network’s smoothness prior, ZeroGrads exhibits

significantly less noise than prior gradient estimation approaches and, as such, can be

scaled to high-dimensional problems with well over 35,000 interlinked optimization

variables. Since the current way of manually creating differentiable algorithms (i.e.,

re-writing entire programs, manually handling edge-cases, ...) is simply not scalable

to arbitrary forward models, we believe our neural surrogates to be a valuable asset

to the graphics community.

142

Conclusion

This thesis charts a trajectory starting with meta-learning neural networks to encode

visual appearance in Chapter 3, with the introduction of Metappearance, which

has served as inspiration for meta-learning a style-space for neural avatar heads

[213]. Subsequently, shifting the focus from network optimization towards more

general optimization techniques for inverse rendering, Chapter 4 present Plateau-

Reduced Differentiable Path Tracing and introduced techniques for robust, variational

optimization in inverse rendering. Finally, Chapter 5 presents ZeroGrads, a model

capable of optimizing arbitrary, non-differentiable and potentially black-box forward

models, which subsequent research has used for the discrete optimization of the

biomimetic design space of winged seeds [160].

In summary, the overarching theme emerging from these chapters and their

individual contributions is the growing synergy between machine learning tech-

niques and physically-grounded graphics and their optimization. As these respective

fields advance, research on how to further bridge the gap between data-driven and

physically-grounded approaches, and on the limits of meta-learning and surrogate-

based optimization in handling the complexity of real-world scenes will become

ever more important. Additionally, research on how to interact with these processes

– either through editability of the trained visual appearance networks or through

user-control during optimization – will be an important future trend if we want to

enable users to customize assets to their individual needs. Current trends – such as

the integration of differentiable rendering and generative models, e.g., for genera-

tive 3D content creation, or advances in self-supervised learning for graphics and

the push toward real-time optimization – underscore the relevance of the methods

presented in this thesis. As generated neural assets and visual appearance networks

continuously move towards production-readiness, the contributions of this thesis

provide a foundation for future research at the intersection of learning, optimization,

and graphics.

Appendix A

Appendix A: Metappearance

A.1 Meta-Learning

As slightly different variants of meta-learning are used for our different applications,

we here detail their differences. We use different variants since, in order to compute

the meta-gradients, one must backpropagate through backpropagation itself, which

is a very compute-intensive process, as higher-order gradients (more specifically, the

Hessian-vector product) must be calculated throughout the computation graph. To

alleviate the computational burden this imposes, several MAML-variants that use

first-order gradient approximations have been proposed. One of those algorithms that

finds use in this work is first-order MAML (FOMAML) [63], which approximates

higher-order gradients by replacing the Hessian with the identity-matrix and hence

updates the meta-objective with the most recent inner-loop gradient, with significant

savings on GPU memory and compute time. In practice, this means that, while

MAML directly optimizes over the single gradient steps that are taken to reach a

solution, FOMAML approximates this high-dimensional gradient trajectory with

the local gradient of its last vertex. FOMAML has been shown to produce results

close to MAML on certain applications [63; 214], which is commonly attributed

to the fact that ReLU networks behave almost linear in high-dimensional spaces

[87], which in turn implies that their derivatives do not carry much second-order

gradient information and can be omitted without severe performance penalties. We

also experimented with Reptile [214], but observed no performance improvements.

A.2. Networks and Implementation Details 144

For the exact algorithm setup, please confer the following application subsections.

Note that using MAML is only compute- and memory-intensive during the

meta-training phase: for inference, we run a mere gradient descent on the model

parameters, and no additional overhead is incurred. We observed performance

increase across all tasks and applications when also meta-learning the inner-loop

learning rate, as proposed by Li et al. [172]. We implement our meta-networks and

competitors in PyTorch [232] and Torchmeta [45].

Fig. A.1 shows the data splits used during each method’s training. In General,

test and train are split into disjoint sets, and the network generalizes over entire

instances of the data. For Overfit and Finetune, the samples in a prob-

lem instance are split into disjoint sets, e.g., train- and test-angles of a BRDF.

Train Test

Meta-train TestMeta-test

Train Test

General

Overfit
Finetune

Meta

Figure A.1: Splitting of test and train for all four training types

For Meta, we distin-

guish between a meta-

train and a meta-test set

(in the meta-learning

literature, these are

also called context- and

target-set). During completion, the inner-loop samples from the meta-train-set, while

its final performance after completion — on which the meta-gradients are calculated

— is evaluated on data from the meta-test-set. However, this is not the data used to

evaluate the final model at inference time. Instead, the same withheld test set as

in General is used. We would like to emphasize that neither training nor meta-

training sees test-data, ever, and we report all our experimental results exclusively

on test data.

A.2 Networks and Implementation Details

We summarize the exact hyperparameters and algorithm setups in Tab. A.1. The

following sections shortly elaborate on the choice of models and approaches we use

for the respective applications.

A.2. Networks and Implementation Details 145

Table A.1: Algorithm setup and meta hyper-parameters for our experiments and the ap-
proaches we compare against.

TEXTURES BRDF SVBRDFSTAT SVBRDFNONSTAT ILLUMINATION TRANSPORT

Publication Henzler et al.
[108]

Sztrajman et al.
[293]

Henzler et al.
[108]

Deschaintre
et al. [50]

Georgoulis
et al. [83]

Zheng and
Zwicker [335]

Type CNN MLP CNN CNN CNN MLP
Rendering — Mitsuba Jakob

[129]
Cook-
Torrance

Cook-
Torrance

Blender PBRT style

Input RGB Image MERL Flash Image RGB Image RGB Image PSS samples
Data 500 textures Matusik [189] Henzler et al.

[108]
Deschaintre
et al. [50]

Gardner et al.
[79]

500 Cornell
box scenes

Meta Algorithm FOMAML MAML FOMAML FOMAML MAML MAML
Gradient Order First Higher First First Higher Higher
Cosine Annealing Yes No Yes No No No
Meta-SGD Yes Yes Yes Yes Yes Yes
Meta-SGD Init. 1×10−3 1×10−3 1×10−3 1×10−3 1×10−3 1×10−3

Meta-Optimizer Adam Adam Adam Adam Adam Adam
Meta-Optim. LR 1×10−4 1×10−4 1×10−4 1×10−5 1×10−5 1×10−4

Weight Decay — 1×10−6 — 1×10−6 1×10−6 1×10−6

Inner-Loop Steps 15 10 20 15 15 8
Meta-Batchsize 5 1 3 1 1 1
Meta Train Time ∼ 2 days ∼ 3 days ∼ 4 days ∼ 4 days ∼ 2 days ∼ 4 days
Meta Train Epo. 100,000 7.6×106 80,000 200,000 220,000 180,000
Time Meta-forw. 0.022 0.00117 0.0309 0.0158 0.01233 0.0296
Time Meta Step 0.06185 0.00309 0.0742s 0.0316 0.02566 0.0592
Time Meta-Inf. 0.6185 0.0309 1.484s 0.474 0.384 0.486
Iterations Overfit 1,000 83,000 5,000 2,000 5,000 8,600
Itera. Finetune 100 1,000 1,000 500 1,000 1,000
Batchsize 4 512 4 8 8 2,000
Latent Space Dim. 64 10 64 512 512 10
Optimizer Adam Adam Adam Adam Adam Adam
Learning Rate 1×10−4 5×10−4 1×10−4 1×10−5 5×10−5 1×10−4

LR × Finetune 10 1 10 10 20 10
Weight Decay 1×10−5 — 1×10−5 — — —
Training Loss L1 VGG Log. MAE Henzler et al.

[108]
Deschaintre
et al. [50]

MSE FW KL Diver-
gence

A.2.1 Textures

We use a U-Net [264] CNN with residual skip connections and AdaIN blocks [125].

As in [82], we optimize for the mean absolute error of VGG matrices between the

reference exemplar and the network’s output. The architecture is similar to Henzler

et al. [108] and we refer to their publication for the exact network details. We use

this architecture as our method Overfit and empirically determined that 1000

training iterations are sufficient to replicate most textures faithfully.

Method General preprends a ResNet-based encoder (ResNet-50, [104]) to

the aforementioned U-Net in order to project the input image into a latent space,

from where the previously mentioned U-Net decoder, conditioned on the latent code

z ∈ R64, reconstructs the exemplar’s features.

Finetuning has been applied in recent publications to steer the output of a

A.2. Networks and Implementation Details 146

Table A.2: Different learning-rate and optimizer comparisons for the baseline methods we
compare against. We choose the best-performing optimizer, respectively.

0.1 0.01 0.001 1×10−4 1×10−5

Finetune, Adam — 0.246 0.205 0.209 0.309
Overfit, Adam — — 0.188 0.183 0.598

Finetune, SGD 0.643 0.327 0.289 0.416 —
Overfit, SGD 0.287 0.259 0.515 — —

general model towards more accurate representations [108; 52; 95]. Note that, for

fine-tuning, we increase the learning rate by a factor of 10, as in Henzler et al. [108],

to accelerate convergence, which makes Finetune a strong baseline.

For our Meta-method, we found a higher number of inner-loop steps to outper-

form the gains from second-order gradients, and hence use FOMAML with k = 15

inner-loop steps.

To show that we compare our meta-method against the best-configured competi-

tors, we ran several experiments to empirically determine the best-suited optimizer

and learning-rate setting. The results of these experiments are depicted in Tab. 2,

while we show results on unseen test-data in Fig. A.2.

A.2.2 BRDFs

Much work was devoted to create, efficiently compress, interpolate and re-sample

(spaces of) BRDFs; for a general survey we refer to Guarnera et al. [91]. Many

applications revolve around representing a full BRDF in high quality from a small

set of measurements. When these are taken in a suitable pattern [217], a linear basis

found through principal component analysis (PCA) can be used as an encoding.

Recently, Rainer et al. [249] showed that NN-based encoding of radiance data is a

viable alternative to traditional, PCA-based methods. Moreover, Hu et al. [119] and

Rainer et al. [250] encode multiple BRDFs and bidirectional texture functions (BTFs)

in a single network, respectively. Finally, Sztrajman et al. [293] show that a compact

two-layer MLP can learn the mapping between angular measurements and RGB

reflectance and is able to faithfully reproduce BRDFs.

To tackle the task of BRDF reconstruction, we use a simple two-layer MLP

A.2. Networks and Implementation Details 147

General MetaFinetuneOverfit Reference

Figure A.2: Inference results for unseen test textures from the classes Grass, Marble, Rock,
Wood, Rust (top to bottom).

with 21 neurons per hidden layer, as described by Sztrajman et al. [293], as method

Overfit. The network receives randomly sample batches of light- and view-

direction in Rusinkiewicz [266] parametrization and then outputs the logarithmic

RGB reflectance for these query directions. We train our competitor Overfit with

the official codebase from [293] with one network per MERL-material.

For General, we take inspiration from [119] and create a latent space of

BRDFs by training a encoder CNN (for the exact details of the architecture we refer

to their publication) that consumes the entire BRDF measurement of 180×90×90

RGB triplets at once. For the encoder, we use the official code from Hu et al. [119],

A.2. Networks and Implementation Details 148

which was kindly provided by the authors. To enable a fair comparison between

all methods, we use the two-layer MLP of Sztrajman et al. [293] as a decoder.

For Finetune, we fine-tune the output of General for 1000 iterations, which

amounts to seeing each measurement in the data twice. We found that increasing the

learning rate had no visible benefits and hence did not modify it.

Our Meta-method uses the same base architecture as Overfit and [293], a

two-layer MLP with 21 neurons per hidden layer. We observed that incorporating

second-order gradients into the optimization leads to more consistent results across

all tasks and therefore use MAML with k = 10 inner-loop steps, which is made

possible by the lightweight architecture (675 parameters in total). While using a meta-

batchsize improved generalization for the previous task, we found that averaging the

meta-gradients over batches here leads to a decrease in result quality and hence use a

meta-batchsize of one. We use the classic 80%-20% train-test split for training, both

for the MERL materials and the angular measurements within a MERL material, and

show results on unseen test BRDFs in Fig. A.3.

A.2.3 Stationary svBRDFs

Classically, svBRDF were acquired by optimization [164] involving appropriate

priors [56; 181; 207], optimization in a neural representation [3; 176] and finally

methods that solve the task using a feed-forward network [108]. Optimization can

be performed in the pixel- [3], or NN basis [108]. We again use an encoder-decoder

approach to solve this problem, similar to the one motivated by Henzler et al. [108].

Their method uses an encoder-decoder architecture, where the encoder first projects

a flash-illuminated image of a material into a latent space. The latent code is then

used to condition the decoder, which is additionally provided with noise (for details,

we refer to the publication) to then infer the svBRDF parameters. More specifically,

the decoder outputs parameter maps of the Cook-Torrance [1982] reflectance model,

i.e., diffuse and specular albedo, roughness and height, which is differentiated to

a normal map. The generated svBRDF maps are then rendered by a differentiable

renderer, assuming collocated camera and light, flat geometry and stationarity, as

elaborated on by Aittala et al. [3].

A.2. Networks and Implementation Details 149

General MetaFinetuneOverfit Reference

Figure A.3: Inference results for different test BRDFs from the MERL database.

We implement method General with the public code provided by Henzler

et al. [108], without fine-tuning, and train until convergence. For Finetune, we

follow the method proposed in [108] and fine-tune the learned general decoder for

1000 epochs, with the learning rate increased by a factor of 10. For Overfit,

we train the decoder of General only, as there is no need to span a latent space

when overfitting only a single exemplar. We additionally let the model learn the

rotation parameters of the flash highlight, which, surprisingly, does not always put

the flash in the center. We attribute this to the fact that minimizing the error between

gram matrices, which is one of the main parts of the training loss, matches exemplar

statistics globally and discards information about relative spatial layout. Note that

A.2. Networks and Implementation Details 150

General ReferenceMetaFinetune MetaOverfit

Figure A.4: Results for unseen test svBRDFs. On the right, we show the parameter maps
produced by Meta: diffuse albedo, normals, roughness and specular albedo.
We provide a top-light illuminated rendering with those maps in the rightmost
column. We do not show the parameter maps of the other approaches for brevity
and refer to [108]. Note that all maps must be free of baked shading, as they
are stationary by construction.

the ratio of fine-tuning to over-fitting is 20%, which is remarkable.

Due to GPU memory constraints, our Meta-method for this application uses

FOMAML and limits training to the decoder, with k = 20 gradient steps and a meta-

batchsize of 3. We observed slightly improved performance when using latent codes

generated by a pre-trained encoder over constant latents, which can be interpreted as

a data pre-processing step. We also experimented with lower amounts of inner-loop

steps, but the results were not convincing. We attribute this to the ambiguity and

under-constrained nature of the problem of estimating svBRDFs from a single image:

While it may be relatively simple for a model to quickly learn RGB colors or statistics

alone, inversely solving the rendering operation for the svBRDF-maps that created

said colors or statistics is a much harder task. We note that it is not uncommon to

use a large number of inner-loop steps when meta-learning on ambiguous problems:

Tancik et al. [296] use 64 steps on a Reptile-model to meta-learn an MLP that

approximates neural radiance fields.

We show inference results for unseen test svBRDFs in Fig. A.4. We further

show the parameter maps produced by our method and confirm that they are free

of baked shading with a re-lighting. This can also be proven by construction, as

only non-stationary parameter maps can bake non-stationary shading into albedo.

A.2. Networks and Implementation Details 151

Stationary maps (like the ones used here) can, by construction, not bake-in non-

stationary shading, as explained by Aittala et al. [3] and Henzler et al. [108]. Proving

this, we have re-lit our results following the protocol in [108] and achieved relit-

errors (VGG Gram L1, lower is better) of 0.25 / 0.10 / 0.12 / 0.16 for General,

Overfit, Finetune, Meta, respectively.

A.2.4 Non-Stationary svBRDFs

To estimate non-stationary shading parameter maps, we use the approaches presented

by Deschaintre et al. [50]. For the results produced by method General, we run

their publicly available model implementation. For all other methods, we use a

PyTorch-port of their original Tensorflow implementation. All methods use their

proposed rendering-loss, which is crucial for accurate reconstruction. For Overfit,

we run the network for 2000 iterations on randomly created scene configurations

(as in the original publication, we use 3 diffuse and 6 specular scenes and aim to

re-create all other settings as closely as possible). Method Finetune starts from

General’s parameter maps and refines these, in equal fashion, for another 500

iterations. The ratio for fine-tuning to over-fitting thus is 25%, which is remarkable.

We have experimented with different learning rates and, similar to our previous

experiments (e.g., TEXTURE) found a learning rate multiplied by factor 10 to achieve

fastest convergence. Even higher learning rates, e.g., 1×10−3, lead the network to

diverge and produce uniformly colored shading maps only. Lower learning rates,

e.g., 5× 10−5 require lots of training iterations (roughly 50% of Overfit) to

achieve satisfactory performance, which somewhat defies the purpose of fine-tuning.

Meta uses FOMAML as meta-learning algorithm, as the sheer size of the network

(General has over 80 million trainable parameters) makes computing higher-order

gradients through several inner-loop steps computationally intractable. We use

k = 15 steps for the reported results. We alternatively experimented with running a

lower-resolution version of the training process (128×128px) and a higher number

of MAML inner-loop steps, but found this to de-stabilize training. For all methods,

we train and evaluate on the publicly available data from Deschaintre et al. [50].

A.2. Networks and Implementation Details 152

Input Re-lit Reference Input Re-lit Reference

G
en

er
al

M
et

a
Fi

ne
tu

ne

Input Re-lit Reference

O
ve

rf
it

Input Re-lit Reference

G
en

er
al

M
et

a
Fi

ne
tu

ne
O

ve
rf

it

Figure A.5: Inference results for svBRDFs from [50]. We show the shading parameter
maps diffuse albedo, normals, roughness and specular albedo and a re-lighting.
Note how Overfit outputs a high specular albedo and a reduced diffuse
albedo, something that (mostly) doesn’t occur in other methods. This is because
Overfit cannot benefit from priors over the reflectance data and hence only
adjusts the maps to fit the rendering.

A.2.5 Illumination

Prior work has predicted parametric or general illumination using optimization

[171; 227; 316], particularly indoors [282; 81; 80; 315] but also outdoors [114], and

even as a volume [313; 284].

In order to meta-learn this task, we train on the Laval HDR Dataset [79], which

provides a wide variety of illumination conditions. As the high spatial resolution

A.2. Networks and Implementation Details 153

of the provided envmaps quickly makes computation intractable, we use a down-

sampled version of the dataset at 32× 64 pixels. Our architecture for encoding

illumination is inspired by Rematas et al. [256] and similarly uses a U-Net-like

encoder-decoder architecture with skip connections. Our encoder takes as input a

128×128 RGBN rendering of a sphere illuminated with the respective environment

map. The down-branch extracts the image information through a cascade of 3×3

convolutions, all followed by ReLU activation and batch normalization (BN). As

in Gao et al. [78] and Rematas et al. [256], we restrict the use of BN to the encoder

part and find this to achieve higfher output fidelity than applying BN on the full

architecture. To avoid checkerboard artefacts, we use bilinear upsampling in the

decoder branch, followed by a zero-padded 3×3 ReLU-convolution, until we finally

arrive at the original spatial resolution of 128×128, which we spatial-pool to the

desired envmap resolution of 32× 64. Additionally, we found it beneficial to let

the network operate in log-space and also append a positional-encoded (6 encoding

functions) coordinate grid to each input. We use this architecture for all methods.

Overfit

Overfit

General MetaFinetune Reference

General MetaFinetune Reference

Figure A.6: Relighting results with unseen environment maps from the test-set. The top row
shows re-renderings illuminated by the different method’s outputs, which we
display in the bottom row. Note how all methods achieve crisp, hard shadows,
indicating that the high dynamic range of the illumination is matched well, but
only optimization-based methods can regress fine nuances, such as the shading
gradient in the bottom inset.

Similarly to the previous applications, we train Overfit on one problem in-

A.2. Networks and Implementation Details 154

stance only, which it overfits in roughly 5,000 iterations. While over-fitting for more

iterations is entirely possible and will result in a slight performance improvement, we

found the performance-gain per increased time to diminish significantly after 5,000

iterations and empirically chose to stop the training then. Similarly, Finetune

needs around 1,000 iterations to fully nudge the output of General to convergence.

We experimented with several learning rate configurations for the fine-tuning experi-

ment and chose to use the best-performing optimizer (Adam, learning rate 1×10−3).

Note that, as in previous experiments, we again increase the fine-tuning learning

rate, which makes Finetune a strong baseline (please also cf. Tab. A.1). For

Meta, we run MAML with k = 15 inner-loop steps. Interestingly, this application

required us to change the outer-loop learning rate for Meta from 1× 10−4, as in

previous experiments, to 1×10−5, to stabilize training. We attribute this to the high

dynamic range of the envmaps and the consequently high values of the gradients.

The Meta-SGD init of 0.001 did not require changing.

A.2.6 Transport

To (meta-) learn the light transport in a scene, we use the method presented by Zheng

and Zwicker [335], where a normalizing flow is used to warp the renderer’s PSS in

order to produce PSS samples that reduce rendering variance. In this scenario, the

normalizing flow can be interpreted as an importance model that learns to produce

samples proportional to the scene-dependent radiance, and can then, once training is

finished, be sampled from.

Figure A.7: Random samples from the Cornell box distribution.

We re-implement the normalizing flow architecture described in Zheng and

Zwicker [335], which is a variant of RealNVP [54]. We use 8 coupling layers,

each of which consists of two residual-MLPs with 40 neurons per layer and batch

A.2. Networks and Implementation Details 155

Table A.3: Timing measurements for the TRANSPORT application in seconds.

Regu
lar

Gene
ral

Over
fit

Fine
tune

Meta

Prepare Rays 0.0s 4.1s 4.1s 4.1s 4.1s
Model Inference 0.0s 0.04s 362.2s 42.1s 0.5s
Trace Image 164.0s 164.0s 164.0s 164.0s 164.0s

Total 164.0s 168.1s 530.3s 210.2s 168.6s

normalization. As in Zheng and Zwicker [335], we pre-train the model to achieve the

identity warp and use the resulting weights as initialization for all further experiments

to speed up convergence (note that this pre-training cost is excluded from all timings

we report). Moreover, we found it beneficial to include an additional ActNorm

layer [150] and use it for all methods. The network is trained with batchsize 2000.

To keep computation tractable, we limit PSS warping to m = 2, i.e., our model

learns importance distributions for the first two bounces. For all subsequent bounces,

we continue with randomly sampled rays. This is an established technique (cf.

[335; 200]), as later bounces contribute less to the final render and hence are not as

amenable to importance sampling.

For our experiments, we use a PBRT-style renderer written in C++ and integrated

into Python via pybind11. At inference time, the renderer consumes PSS coordinates

created by the trained normalizing flow, whereas, for the data creation process, it

is also able to return the PSS coordinates that have been used to render the scene.

To generate the data for the corresponding PSS warps, we create a set of Cornell-

box-like scenes (Fig. A.7), with a random number of spheres (between 1 and 5)

with random materials (diffuse color, reflective metal, refractive glass) and a random

top-light configuration. We trace all these scenes at resolution 120× 120 pixels

(cf. Tab. A.3 for timing) to ease computation, but ask the reader to note that path-

tracing with the final flow model can be carried out at any resolution. We store

all paths traversed during rendering and subsequently re-sample those that carry

high throughput to achieve approx. 20 epp (examples-per-pixel, a SPP metric that

originates from omitting the pixel-filter and is effectively the average spp, cf. [335]),

which leads to a 6-dimensional dataset per scene (recall that PSS dimensionality is

A.2. Networks and Implementation Details 156

2(m+1)) that consists of 120×120×20 samples.

For Overfit, we adhere to the training guidelines published in Zheng and

Zwicker [335] and train each network for 60 epochs (this corresponds to approx.

8,600 gradient steps). As usual, over-fitting produces one network instantiation

per scene. For General, we want to be able to train a network that generalizes

across scenes. To allow this, we prepend the previously discussed flow model with

a PointNet (PN) [245] -like encoder that consumes the already resampled dataset.

Using the resampled PSS coordinates as input effectively allows the encoder to focus

on encoding and out-sources the task of deciding which samples are important to a

pre-processing stage that is equivalent for all methods. Our PN encoder uses three

linear layers with 64, 128 and 512 neurons, respectively, batch normalization and

pReLU activation units, and outputs a latent code on which we then condition the

flow by concatenation. As in our previous experiments, Finetune again starts

from the output of General and re-fines the estimated density for a total of 1,000

gradient steps. Meta is trained with eight MAML inner-loop steps and consumes

batches of size 10,000. We found the higher batchsize necessary to stabilize meta-

training with a higher number of inner-loop steps. Note that even after all inner-loop

steps have been completed, Meta still has seen much fewer data samples (Meta:

8×10,000 = 80,000) than its competitors, that are presented with the entire dataset

of approx. 288,000 samples.

A.2. Networks and Implementation Details 157

General MetaFinetuneOverfit Reference

Figure A.8: Equal-time comparisons on unseen data from the test set for each application
(top to bottom row: TEXTURE, BRDF, SVBRDF, SVBRDFNONSTAT, ILLU-
MINATION including the regressed envmap, TRANSPORT). Methods Overfit
and Finetune are ran with the same amount of gradient steps Meta uses,
i.e., the same wall-clock time. As Overfit starts the training from scratch, it
cannot move from the (random) model initialization in such a low number of
gradient steps, which is why its output is unsatisfactory. General does not
change during inference. Finetune moves the output of General towards
the reference, but cannot achieve good quality in such few optimization steps.
Meta encodes the reference best across all applications.

Appendix B

Appendix: Plateau-reduced

Differentiable Path Tracing

This supplemental contains the hyperparameters we used for our experiments

(Sec. B.1), including an additional analysis of our two main parameters N and

σ (Sec. B.2), experiments on compatibility with plateau-free problems and other

renderers (Sec. B.3) and the derivations of the equations presented in the main text

(Sec. B.4).

B.1 Hyperparameters
Hyperparameters: Tab. B.1 shows all the hyperparameters we use for

our main experiments for all tasks. The first two columns are hyperparam-

eters of our approach: N is the number of samples we use during an opti-

mization iteration (for an analysis, cf. Fig. B.2 left), and σ0 is the kernel

spread with which we start the optimization (for an analysis, cf. Fig. B.3).

ReferenceInitial
Figure B.1: The full view of the GI task.

spp is the rendering setting we

use for rendering with Mitsuba,

which we generally did not tune

and hence do not regard as a

hyperparameter of our method,

but set such that the noise is less

than the signal we want to optimize. We use the same spp across all path-tracing

B.2. Parameter Analysis 159

methods. LR is the optimizer’s learning rate (we use Adam with default parameters)

and the last column shows the number of optimization iterations we run. We warm-

start our σ annealing schedule after approx. 50% of the optimization and use

σm = 0.01 for all experiments as the lowest value we decrease σ to during the

annealing schedule, in order to avoid numerical instabilities.

Table B.1: Experiment parameters (columns) for all tasks (rows).

N σ0 spp LR Iter.

CUP 2 0.250 16 0.01 400
SHAD. 2 0.500 32 0.02 400
OCCL. 2 0.800 32 0.02 600
GI 4 0.125 16 0.05 500
SORT 16 0.500 32 0.01 4000
CAUST. 4 0.125 32 0.01 500

Average spread: We additionally re-ran all experiments where σ0 ̸= 0.5 with the

average kernel spread of σ0 = 0.5 and show the optimization outcome in Tab. B.2.

Our method still performs very well and achieves results that are comparable with

our findings from the main text.

Additional Information: Fig. B.1 shows the full view of the GLOBAL ILL. task.

We include this here as, in the main text, we only show the inset that the optimization

sees. Note how the left wall changes color, the light changes position, and the large

box changes rotation around its horizontal axis.

B.2 Parameter Analysis
Timing: We further investigate the influence of the number of samples N on the

convergence and runtime of our method. Recall that N is the number of perturbations,

and not the number of samples per pixel (cf. the main text and Alg. 1 for details).

Fig. B.2 (right) shows that our method’s runtime scales linearly with the number of

samples we use. This is as the bulk of our method’s time is spent in evaluating f ,

i.e., within the rendering operation. Using more samples means evaluating f more

often, which leads to an increased runtime. The overhead of the sampling operation

and the gradient computation is small in comparison and, given the linear increase in

B.2. Parameter Analysis 160

Table B.2: Image- and parameter-space MSE (rows) for σ0 = 0.5 on different tasks
(columns). Our method still performs well and finds the correct parameters.

CUP OCCL. GI CAUST.

Img. 1.8×10−7 2.2×10−3 1.0×10−4 2.4×10−3

Param. 3.0×10−7 7.2×10−3 6.6×10−2 2.2×10−4

Fig. B.2, can be neglected. We also show Mitsuba’s runtime as the blue, dotted line.

0 150

1.5

0.0

N = 2

N = 16

N = 8

N = 4

N = 32

Pa
ra

m
. E

rr
or

Iterations

1.5

1.0

0.5

0.0
322 4 8 16

Av
g.

 It
er

. T
im

e
(s

)

Number of Samples

Figure B.2: Convergence comparison on the SHADOW task (left) and runtime analysis
(right) of our method for different number of samples N (colored lines left,
horizontal axis right).

It is constant, as Mitsuba only renders a single sample, but does so with complicated

methods like re-parametrization, gradient tracking or adjoint scattering. We can

thus render approx. 16 samples before reaching Mitsuba’s runtime (cf. also Tab. 3,

main text). Therefore, our runtime does not significantly change with the number of

problem dimensions (e.g., 1D vs. nD), but with the time it takes to evaluate f .

Convergence: How does rendering with a higher number of samples N affect

the performance of our method? To answer this question, Fig. B.2 (left) shows our

method’s convergence for different values of N. A low number of N = 2 (i.e., a single

sample and its antithesis) achieves the slowest convergence rate, while converge

improves with more samples and stagnates at around N = 10. The final error

decreases slightly with higher N (param.-MSE 9.5×10−5 for N = 2 vs. 4.7×10−6

for N = 16), but this improvement translates to no visible rendering improvement

due to the small scale (10−5) of the values. Using more than N = 2 hence yields

no improvement here, as the faster convergence is offset by the longer runtime (cf.

B.3. Compatibility 161

Fig. B.2). This relation might, however, change for different tasks.

Choosing σ : Moreover, we investigate how the choice of the initial kernel spread

σ0 affects the optimization outcome. With otherwise equal hyperparameters, we run

the SHADOW task with σ0 varying in [0,1] and show the results in Fig. B.3. For very

small σ0, i.e., σ0 < 0.2, the optimization does not converge and produces a similar

failure case to the differentiable path tracer by moving the sphere out of the image.

1.0

0.0

N
or

m
. F

in
al

 Im
g.

 M
SE

bandwidth
0.0 0.50 1.0

Figure B.3: The effect of σ0 (horizontal) on the opti-
mization outcome (vertical). We show the
outcome with an enlarged camera FOV in
orange.

This is as for σ0 → 0, our

method approaches the rigid op-

timization by Mitsuba. The loss

landscape is not smoothed and

the optimization stagnates or

fails. For σ0→ 1, we encounter

a different failure case: the sam-

pled values are so far spaced out

that some of them lie outside

the view frustum. As we use

only N = 2 samples, it is thus

very unlikely that we sample the proximity of the true position, leading to very noisy

gradients that let our method diverge. This issue can easily be alleviated by enlarging

the camera’s field of view (FOV), upon which our method converges again (orange

dots in Fig. B.3, camera FOV changed from 40◦ to 60◦), as the samples are then

back inside the view frustum. In general, we normalize all parameter spaces to [0,1]

where possible, e.g., the rotation in the CUP task.

B.3 Compatibility

Plateau-free problems: In this section, we show that our method is compatible

with optimization problems that are already plateau-free by design. To this end,

we optimize an image texture that is rendered onto a plane under environment

illumination. The texture has dimension 128×128 in RGB space, making this a

49,152-dimensional problem.

B.4. Additional Derivations 162

Initial Di�. Path Tracer Ours Reference
Figure B.5: The SHADOW task re-run with Redner as renderer.

Fig. B.4 shows the reference texture and our method’s final results, alongside

the convergence curves for the image (orange) and parameter (black) error.

Ours Reference Iterations

Er
ro

r

Figure B.4: Texture optimization using our approach. Image-
and parameter error in orange and black, respec-
tively.

Path Tracer: Sub-

sequently, we will use

a different path tracing

engine as backbone for

our method and show

that our methods also

works with a different

rendering backbone. For this experiment, we use Redner, which uses edge-

sampling to derive gradient expressions during path tracing. As we can see from

Fig. B.5, this method fails similarly to Mitsuba, whereas our method again suc-

cessfully delivers a complete optimization and finds the correct parameters.

B.4 Additional Derivations

We derive here show how we differentiate our kernel and arrive at the equations

presented in the main text.

We define our kernel as a Normal distribution in parameter space with mean 0,

i.e.,

κ(τ) =N (0,σ) =
1

σ
√

2π
exp

(
− τ2

2σ2

)
which we will then use to offset our current parameters θ ′ = θ −κ(τ). Performing

this translation with the original kernel is equivalent to convolving directly with the

translated kernel (cf. Fig. B.6), which naturally also holds for the derivative kernel.

B.4. Additional Derivations 163

This allows us to rewrite the translated kernel as

κ
′(τ) =N (θ ,σ) =− 1

σ
√

2π
exp

(
−(τ−θ)2

2σ2

)
.

Differentiating the above equation yields

∂κ ′

∂θ
(τ) =− τ−θ

σ3
√

2π
exp

(
−(τ−θ)2

2σ2

)
,

which evidently is a translated version of Eq. 11 in the main text. To avoid clutter in

the notation, we hence write

∂κ

∂θ
(τ) =

−τ

σ3
√

2π
exp

(
−τ2

2σ2

)
.

0

Figure B.6

In order to find the CDF of this function, we must

integrate its PDF. The PDF must integrate to 1 over the

entire domain. As explained in the main text, we treat

each halfspace separately and hence normalize the PDF

on the positive halfspace to integrate to 0.5, yielding

τ

2σ2 exp
(
−τ2

2σ2

)
,

which, upon integration, results in the CDF

−0.5exp
(
−τ2

2σ2

)
+C+ ,

where C+ is the integration constant on the positive halfspace. Handling the negative

halfspace analogously results in the same equation, but with a flipped sign and C−

as integration constant. The fact that the CDF must be continuous, monotonically

increasing and defined in (0,1) tells us that C+= 1 and C−= 0. To enable importance

sampling with the CDF, we must invert it into the inverse cumulative distribution

B.4. Additional Derivations 164

function (ICDF), which yields

F−1(ξ) =


√

2σ2 log(2(1−ξ)) τ > 0√
2σ2 log(2ξ) τ < 0 .

(B.1)

Solving the domain constraints of the square-root and the logarithm, we find that

the ICDF for positive halfspace is defined for ξ ∈ [0.5,1), whereas its negative

counterpart is defined in ξ ∈ (0,0.5], which, given ξ ∈ (0,1), can be simplified to

yield the final equation presented in the main text

F−1(ξ) =
√
−2σ2 log(ξ) .

Appendix C

Appendix: ZeroGrads - Learning

Local Surrogate Losses For

Non-Differentiable Graphics

This supplementary contains additional information on our surrogate implementation

and hyperparameters (Sec. C.1), rendering setups and detailed descriptions of the

tasks we solve (Sec. C.2.1).

C.1 Implementation Details
We implement all our experiments in PyTorch [231]. The proxy powering our

surrogate is implemented as a MLP and activated by a leaky ReLU. We randomly

initialize our Neural Proxy for each optimization run (via the standard PyTorch

initialization, for the quadratic proxy, we choose the identity matrix) and optimize

its weights alongside the parameter with a separate Adam optimizer. We perform

three update steps on the surrogate parameters φ per optimization iteration in order

to improve the surrogate’s fit to the sampled data. This is simple autodiff-driven

GD and hence very fast. Note that no new data is sampled between these update

steps, they merely serve to improve the surrogate fit and do not increase the required

computational budget. For all gradient updates, we use the Adam optimizer with

standard parameters and learning rates as specified in Tab. C.1. We additionally

experimented with different sampling patterns and found both both low-discrepancy

C.1. Implementation Details 166

(Sobol) and antithetic samples and found both to improve performance, and adapt

antithetic samples for simplicity. We normalize the network’s inputs to [0,1]. For

the lower-dimensional tasks (ndim < 50), it suffices to use 3 hidden layers with 64

neurons each, whereas for the higher-dimensional tasks (below the horizontal line in

Tab. C.1), we found that we needed to increase the surrogate’s capacity to 8 layers à

128 neurons and additionally use positional encoding to increase the frequencies that

the network can encode.

C.1.1 Hyperparameters

Our method comes with two hyperparameters: the number of samples N we use to

estimate our surrogate’s gradient with (cf. Alg.2 in the main text), and the spread

of the locality kernel λ , which will influence how far these samples are spaced out

around the current parameter θ .

Iterations0 10k

Lo
g-

M
SE

Adam 1e-3

Ours 1e-3
Adam 1e-1

Rosenbrock Function w/ a, b = (1, 100) Trajectories for di­. seeds

10-1

105

Figure C.1: We evaluate our method on the Rosenbrock function against gradient descent
with analytical gradients and Adam with equal learning rate, sample count
and iterations. Similar to Adam, our method struggles to make progress in
the valleys of low slope, a common limitation of gradient-based techniques.
Adam, with a higher learning rate, converges faster than our method. The
convergence plots in the right subfigure are median values over an ensemble of
10 independent runs and seeds.

We specify the number of samples N we use for estimating the surrogate’s gra-

dients in Tab. C.1. For the lower-dimensional tasks, it suffices to use N = 2, whereas

for the higher-dimensional tasks, the noise and higher variance from this rough gradi-

ent estimate impede convergence and thus require higher sample counts. We would

like to emphasize that those are still far lower than what competing methods use, e.g.,

2ndim for FD or m × ndim,m≫ 2, for directional Gaussian smoothing (DGS) [331].

C.2. Tasks 167

Table C.1: Our hyperparameters σo and N, as well as the experiment settings for the different
tasks, sorted by dimensionality in ascending order. MPL is short for matplotlib.

σo N ndim LR θ LR φ Renderer

WICKER 0.33 2 3 1×10−3 1×10−3 Blender
BRDF 0.33 2 4 1×10−3 1×10−3 Mitsuba
CBOX 0.10 2 4 5×10−4 1×10−3 Mitsuba
GRAVITY 0.20 2 5 1×10−3 1×10−3 Blender
ROCKET 0.33 2 10 1×10−3 5×10−4 MPL
NODEGR. 0.20 2 24 1×10−3 1×10−3 Blender
LED 0.33 2 336 1×10−3 1×10−3 Blender

MOSAIC 0.025 16 320 5×10−4 1×10−3 Blender
CAUSTIC 0.013 20 1,024 2×10−4 1×10−4 PyTorch
MESH 0.025 20 7,686 2×10−3 1×10−4 NVDiff.
SPLINE GEN. 0.025 20 8,764 1×10−5 1×10−4 MPL
MLP 0.025 20 35,152 1×10−4 1×10−4 MPL
TEXTURE 0.025 20 196,608 1×10−5 1×10−4 MPL

Our method also benefits from more samples in the lower-dimensional regime, but

these come at the cost of increased compute, which is why we tried to achieve a

minimal number to keep the overhead low.

We show a comparison of different sample counts on the MESH and MLP tasks

in Fig. C.3 and detail the remaining hyperparameters and experiment settings in

Tab. C.1, where σo denotes the spread of the locality kernel λ . As a general rule

of thumb, we recommend setting the initial σo to 0.33 on normalized domains and

N
or

m
. M

SE

Samples (log₂)
0

1

8 64

MLP

Mesh

Figure C.3: Final error vs. samplecount N.

finetune from there, if necessary. For

higher-dimensional, interlinked prob-

lems, we have found a more fine-

granular sampling to be necessary and

use σo = 0.025. We use 15% of the lo-

cality spread as the spread of the smooth-

ing kernel κ .

C.2 Tasks
This section provides information on the task setup, problems, goals and rendering

architectures used.

C.2. Tasks 168

ReferenceOursnoSmoothnoNNnoLocal

n.a.
Te

xt
ur

e
M

LP
M

es
h

C
au

st
ic

Figure C.2: We show the results of our ablated methods from the main manuscript (Sec. 4.1)
on the higher-dimensional tasks. Similar to CMA, the result for the quadratic
proxy (noNN) could not be run due to the quadratic memory complexity.

C.2.1 Rendering settings and task descriptions

To render the images for the tasks Mosaic, Wicker, LED, NodeGraph and Gravity, we

interface our method with Blender via an efficient socket-based local TCP network,

which enables us to make use of Blender’s rendering engines and the embedded

physics solver. All images were set to render noise-free under either Eevee or Cycles,

with 16 to 128 samples and denoising activated. For the tasks BRDF and Cornell-

Box, and the comparisons with Mitsuba, we use Mitsuba 3 [130] with the path-replay

backpropagation integrator at 16spp. For the Mesh task, we use NVDiffRast [157]

with standard hyperparameters. For the remaining tasks Rocket, Spline Generation

and Texture, we use a custom matplotlib-based renderer [126]. Note that none of

this interfacing is necessary for our method to work, but pure convenience for rapid

prototyping and reducing I/O times from and to disk. Most importantly, we do not

C.2. Tasks 169

propagate any gradient information through the rendering process, even if this were

possible, e.g., when using a differentiable renderer. One could alternatively render

an image, save it to disk and manually load it and perform a gradient update step,

which would yield the same results, but be arguably less convenient.

While some of our higher-dimensional example tasks could in theory also be

solved via established, specialized methods (e.g., [130; 215; 115]), they show that

our method scales well to higher dimensional problems and reinforce our argument

of general applicability. All comparisons to the following optimization algorithms

are performed under the same budget of function evaluations.

For the comparisons with GAs, we use the publicly available Python package

pygad [77]. For SA [321], we use the scipy library [308]. For SPSA [283], we

use the publicly available spsa package [212]. Note that, while we use standard

hyperparameters for the other packages, we here adapted the SPSA perturbation

radius to the sampling radius used by our method in order to enable a fair comparison

(the default value of 2.0 is too large for many of our problems, e.g., for the delicate

task of network training).

TEXTURE For the TEXTURE task, we use our method to optimize the 256 pixels

of an image texture, leading to a 256×256×3 = 196,608 optimization problem. We

randomly initialize the texels from N (0.5,0.05), i.e., they are drawn from a Normal

distribution with mean 0.5, corresponding to a grey value. As is common, we

additionally employ a whitening transform during optimization [218].

MLP This task is an extension of the texture task to address the concern that

optimization variables are not sufficiently interlinked with each other. To this end,

we train a MLP to replicate randomly sampled digits from the MNIST [162] dataset.

The MLP has two ReLU-activated hidden layers of 32 neurons and a final layer with

784 neurons that is activated by a Sigmoid, leading to a total of 35,152 network

weights and hence to a 35,152-dimensional optimization problem. The weights are

initialized via the standard formula U(−k,k), where k is the reciprocal of the layer’s

input features [231].

CAUSTIC For this task, we take inspiration from Wyman and Davis [320] and

C.2. Tasks 170

write a fast, rasterization-based caustic renderer.

Figure C.4: An illustration why differ-
entiating an ODE solver
R(θ) w.r.t. time is not triv-
ially differentiable: mov-
ing the event-time θ of the
blue signal within the yel-
low interval will not af-
fect the observed outcome,
as the solver operates on
the discretized version R̂
only and will continue to
observe “on” and “off” at
timesteps i and i+1, respec-
tively.

The idea is that a parallel bundle of

rays from a faraway directional light source

hits a parameterized refractive surface (our

heightfield, usually modeled as a glass slab

[218; 225; 272]), and gets refracted accord-

ing to Snell’s law (we use an index of re-

fraction of 1.33). The refracted rays then hit

a receiver plane, where we record, for each

pixel, the number of received rays, resulting

in an approximate caustic. We use an equal

ray- and receiver resolution of 512p. The

relation between the optimization variables

(the heightfield, in our case parameterized

as a cubic B-Spline of resolution 322, ran-

domly initialized) and the final output in this

task is highly non-linear, as a change in the

heightfield has the potential to affect various pixels across the entire receiver plane.

Moreover, the task is not trivially differentiable, as the conversion of the (continuous)

hitpoint on the receiver plane to discrete pixel coordinates in the image grid is a

discontinuous operation.

MESH For the MESH task, we optimize the vertices of a triangle mesh such

that the renderings of the mesh match those of a reference shape. Our source mesh

has 2,562 vertices whose 3D positions we optimize, leading to a highly interlinked

7,686-dimensional problem. We follow the approach in [215] and use their smooth

formulation, the AdamUniform optimizer and the Laplacian regularization, thereby

nicely showing that our surrogate successfully learns to replicate the regularized loss

landscape. For fairness, all competitors operate in this parametrization. Following

[215], the source shape is initialized as a tessellated sphere and rendered from

13 different viewpoints under environment illumination using NVDiffRast [157] –

C.2. Tasks 171

however, without backpropagating their gradient information; all gradients employed

in the optimization are produced by our surrogate.

SPLINE GENERATION For the SPLINE GENERATION task, we train a gen-

erative model, a VAE[148], to replicate digits from the MNIST dataset in a spline

representation. Our VAE consists of an encoder-MLP with roughly 40k neurons,

and a decoder-MLP with 8,764 neurons. To stabilize training, we use a pre-trained

encoder that serves as feature extractor and projects the MNIST images into the

latent space, from where we learn a generative decoder that predicts the horizontal

and vertical translation of 10 spline support points (initialized diagonally across the

image plane). Subsequently, we fit a spline through these predicted support points

with a (matplotlib-based) non-differentiable renderer and learn our surrogate on the

reconstructed splines’ image-space MSE, regularized by the VAE’s KLD (weighting

factor 0.1). Descending along the surrogate gradients then produces the weights for

a generative decoder that can be sampled to generate new MNIST digits. Again, we

initialize all stateful components with the standard formula U(−k,k), where k is the

reciprocal of a layer’s input features [231].

Bibliography

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous systems, 2015.

[2] Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE

transactions on medical imaging, 37(6), 2018.

[3] Miika Aittala, Timo Aila, and Jaakko Lehtinen. Reflectance modeling by

neural texture synthesis. ACM Trans. Graph. (Proc. SIGGRAPH), 35(4), 2016.

[4] Maruan Al-Shedivat, Liam Li, Eric Xing, and Ameet Talwalkar. On data effi-

ciency of meta-learning. In International Conference on Artificial Intelligence

and Statistics, pages 1369–1377. PMLR, 2021.

[5] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features

as dense visual descriptors. arXiv preprint arXiv:2112.05814, 2(3):4, 2021.

[6] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman,

David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learn-

ing to learn by gradient descent by gradient descent. Advances in neural

information processing systems, 29, 2016.

[7] Navid Ansari, Hans-Peter Seidel, Nima Vahidi Ferdowsi, and Vahid Babaei.

Autoinverse: Uncertainty aware inversion of neural networks. Advances in

Neural Information Processing Systems, 35:8675–8686, 2022.

[8] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your

maml. arXiv:1810.09502, 2018.

BIBLIOGRAPHY 173

[9] Steve Bako, Mark Meyer, Tony DeRose, and Pradeep Sen. Offline deep

importance sampling for monte carlo path tracing. In Comp. Graph. Forum

(Proc. EGSR), volume 38, 2019.

[10] Sai Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein,

Jonathan Ragan-Kelley, Fredo Durand, Aaron Lefohn, and Yong He. Slang.d:

Fast, modular and differentiable shader programming. ACM Transactions

on Graphics (SIGGRAPH Asia), 42(6):1–28, December 2023. doi: 10.1145/

3618353.

[11] Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. Unbiased warped-area

sampling for differentiable rendering. ACM Trans. Graph., 39(6), 2020.

[12] Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao

Li, and Jonathan Ragan-Kelley. Systematically differentiating parametric

discontinuities. ACM Trans Graph, 40(4), 2021.

[13] Sai Praveen Bangaru, Michaël Gharbi, Tzu-Mao Li, Fujun Luan, Kalyan

Sunkavalli, Miloš Hašan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Frédo

Durand. Differentiable rendering of neural sdfs through reparameterization.

arXiv preprint arXiv:2206.05344, 2022.

[14] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo

Martin-Brualla, and Pratul P Srinivasan. Mip-nerf: A multiscale representation

for anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF

international conference on computer vision, pages 5855–5864, 2021.

[15] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and

Peter Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields.

In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 5470–5479, 2022.

[16] Russell R Barton. Metamodeling: a state of the art review. In Proceedings of

Winter Simulation Conference, pages 237–244. IEEE, 1994.

BIBLIOGRAPHY 174

[17] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Olek-

sandra Prudnikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter,

and Sepp Hochreiter. xlstm: Extended long short-term memory. arXiv preprint

arXiv:2405.04517, 2024.

[18] Petr Beckmann and Andre Spizzichino. The scattering of electromagnetic

waves from rough surfaces. Norwood, 1987.

[19] Gabriel Belouze. Optimization without backpropagation. arXiv preprint

arXiv:2209.06302, 2022.

[20] Mojtaba Bemana, Karol Myszkowski, Jeppe Revall Frisvad, Hans-Peter Sei-

del, and Tobias Ritschel. Eikonal fields for refractive novel-view synthesis. In

ACM SIGGRAPH, 2022.

[21] Alexander William Bergman, Petr Kellnhofer, and Gordon Wetzstein. Fast

training of neural lumigraph representations using meta learning. In NeuriIPS,

2021.

[22] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-

Philippe Vert, and Francis Bach. Learning with differentiable pertubed opti-

mizers. NeurIPS, 33, 2020.

[23] Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov,

Xiao Wang, Daniel Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael

Tschannen, Emanuele Bugliarello, et al. Paligemma: A versatile 3b vlm for

transfer. arXiv preprint arXiv:2407.07726, 2024.

[24] Sai Bi, Stephen Lombardi, Shunsuke Saito, Tomas Simon, Shih-En Wei,

Kevyn Mcphail, Ravi Ramamoorthi, Yaser Sheikh, and Jason Saragih. Deep

relightable appearance models for animatable faces. ACM Trans. Graph., 40

(4), 2021.

[25] Paul E Black. Dictionary of algorithms and data structures. 1998.

BIBLIOGRAPHY 175

[26] James F Blinn. Models of light reflection for computer synthesized pictures.

In Proceedings of the 4th annual conference on Computer graphics and

interactive techniques, pages 192–198, 1977.

[27] Daniel Bolya, Chaitanya Ryali, Judy Hoffman, and Christoph Feichtenhofer.

Window attention is bugged: How not to interpolate position embeddings.

arXiv preprint arXiv:2311.05613, 2023.

[28] George EP Box and Norman R Draper. Empirical model-building and re-

sponse surfaces. John Wiley & Sons, 1987.

[29] Stefan Brabec, Thomas Annen, and Hans-Peter Seidel. Practical shadow

mapping. Journal of Graphics Tools, 7(4):9–18, 2002.

[30] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,

Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transforma-

tions of Python+NumPy programs, 2018. URL http://github.com/

google/jax.

[31] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,

Skye Wanderman-Milne, et al. Jax: Autograd and xla. Astrophysics Source

Code Library, pages ascl–2111, 2021.

[32] Kartik Chandra. An unexpected challenge in using forward-mode automatic

differentiation for low-memory deep learning. Undergrad Theses, 2021.

[33] Kartik Chandra, Tzu-Mao Li, Joshua Tenenbaum, and Jonathan Ragan-Kelley.

Designing perceptual puzzles by differentiating probabilistic programs. In

Proc. SIGRAPH, 2022.

[34] Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gra-

dient descent: The ultimate optimizer. Advances in Neural Information

Processing Systems, 35:8214–8225, 2022.

http://github.com/google/jax
http://github.com/google/jax

BIBLIOGRAPHY 176

[35] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum.

A compositional object-based approach to learning physical dynamics. arXiv

preprint arXiv:1612.00341, 2016.

[36] Swarat Chaudhuri and Armando Solar-Lezama. Smooth interpretation. ACM

Sigplan Notices, 45(6):279–291, 2010.

[37] Swarat Chaudhuri and Armando Solar-Lezama. Smoothing a program soundly

and robustly. In Computer Aided Verification: 23rd International Conference,

CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings 23, pages

277–292. Springer, 2011.

[38] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen,

Alec Jacobson, and Sanja Fidler. Learning to predict 3d objects with an

interpolation-based differentiable renderer. NeuRIPS, 32, 2019.

[39] Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schu-

bert, Andrew Kensler, Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw,

Marc Bannister, et al. Renderman: An advanced path-tracing architecture for

movie rendering. ACM Trans. Graph., 37(3):1–21, 2018.

[40] Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vlasic, and Zhoutong

Zhang. Differentiable surface rendering via non-differentiable sampling. In

Proc. ICCV, 2021.

[41] Robert L Cook and Kenneth E. Torrance. A reflectance model for computer

graphics. ACM Trans. Graph., 1(1), 1982.

[42] Veronica Czitrom. One-factor-at-a-time versus designed experiments. The

American Statistician, 53(2):126–131, 1999.

[43] Kristin J Dana and Jing Wang. Device for convenient measurement of spatially

varying bidirectional reflectance. JOSA A, 21(1), 2004.

[44] Cuthbert Daniel. One-at-a-time plans. Journal of the American statistical

association, 68(342):353–360, 1973.

BIBLIOGRAPHY 177

[45] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua

Bengio. Torchmeta: A Meta-Learning library for PyTorch, 2019. URL

arXiv:1909.06576.

[46] Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio,

Guillaume Lajoie, and Pierre-Luc Bacon. Continuous-time meta-learning

with forward mode differentiation. arXiv preprint arXiv:2203.01443, 2022.

[47] Thomas Deliot, Eric Heitz, and Laurent Belcour. Transforming a non-

differentiable rasterizer into a differentiable one with stochastic gradient

estimation. arXiv preprint arXiv:2404.09758, 2024.

[48] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[49] Xi Deng, Fujun Luan, Bruce Walter, Kavita Bala, and Steve Marschner.

Reconstructing translucent objects using differentiable rendering. In ACM

SIGGRAPH 2022 Conference Proceedings, pages 1–10, 2022.

[50] Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and

Adrien Bousseau. Single-image svbrdf capture with a rendering-aware deep

network. ACM Trans. Graph. (Proc. SIGGRAPH), 37(4), 2018.

[51] Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and

Adrien Bousseau. Flexible svbrdf capture with a multi-image deep network.

In Computer graphics forum, volume 38, pages 1–13. Wiley Online Library,

2019.

[52] Valentin Deschaintre, George Drettakis, and Adrien Bousseau. Guided fine-

tuning for large-scale material transfer. In Comp. Graph. Forum, volume 39,

2020.

[53] Luc Devroye. Sample-based non-uniform random variate generation. In

arXiv:1909.06576

BIBLIOGRAPHY 178

Proceedings of the 18th conference on Winter simulation, pages 260–265,

1986.

[54] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation

using real nvp. arXiv preprint arXiv:1605.08803, 2016.

[55] Julie Dorsey, Holly Rushmeier, and François Sillion. Digital modeling of

material appearance. 2010.

[56] Ron O Dror, Edward H Adelson, and Alan S Willsky. Recognition of sur-

face reflectance properties from a single image under unknown real-world

illumination. CVPR, 2001.

[57] John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized

smoothing for stochastic optimization. SIAM Journal on Optimization, 22(2):

674–701, 2012.

[58] DS Ebert. Texturing & Modeling, A procedural Approach. Morgan Kaufman,

2002.

[59] Alexei A Efros and William T Freeman. Image quilting for texture synthesis

and transfer. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2,

pages 571–576. 2023.

[60] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric

sampling. In ICCV, 1999.

[61] L eon Bottou. Online learning and stochastic approximations. Online learning

in neural networks, 17(9):142, 1998.

[62] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural

acceleration for general-purpose approximate programs. In 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 449–460.

IEEE, 2012.

BIBLIOGRAPHY 179

[63] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. In ICML, 2017.

[64] Michael Fischer and Tobias Ritschel. Metappearance: Meta-learning for

visual appearance reproduction. ACM Trans. Graph., 41(6):1–13, 2022.

[65] Michael Fischer and Tobias Ritschel. Plateau-free differentiable path tracing.

arXiv preprint arXiv:2211.17263, 2022.

[66] Michael Fischer and Tobias Ritschel. Plateau-reduced differentiable path

tracing. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 4285–4294, 2023.

[67] Michael Fischer and Tobias Ritschel. Zerograds: Learning local surrogates

for non-differentiable graphics. ACM Transactions on Graphics (TOG), 43

(4):1–15, 2024.

[68] Michael Fischer, Konstantin Kobs, and Andreas Hotho. Nicer: Aesthetic im-

age enhancement with humans in the loop. arXiv preprint arXiv:2012.01778,

2020.

[69] Michael Fischer, Iliyan Georgiev, Thibault Groueix, Vladimir G Kim, Tobias

Ritschel, and Valentin Deschaintre. Sama: Material-aware 3d selection and

segmentation. arXiv preprint arXiv:2411.19322, 2024.

[70] Michael Fischer, Zhengqin Li, Thu Nguyen-Phuoc, Aljaz Bozic, Zhao Dong,

Carl Marshall, and Tobias Ritschel. Nerf analogies: Example-based visual

attribute transfer for nerfs. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 4640–4650, 2024.

[71] Michael Fischer, Tobias Ritschel, et al. Higher-order differentiable rendering.

arXiv preprint arXiv:2412.03489, 2024.

[72] Harley Flanders. Differentiation under the integral sign. The American

Mathematical Monthly, 80(6):615–627, 1973.

BIBLIOGRAPHY 180

[73] Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin,

Hujun Yin, and Raia Hadsell. Meta-learning with warped gradient descent.

arXiv preprint arXiv:1909.00025, 2019.

[74] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe,

Ryan Overbeck, Noah Snavely, and Richard Tucker. Deepview: View synthe-

sis with learned gradient descent. In CVPR, 2019.

[75] Alexander IJ Forrester and Andy J Keane. Recent advances in surrogate-based

optimization. Progress in aerospace sciences, 45(1-3):50–79, 2009.

[76] Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. Tilegan: synthesis

of large-scale non-homogeneous textures. ACM Transactions on graphics

(TOG), 38(4):1–11, 2019.

[77] Ahmed Fawzy Gad. Pygad: An intuitive genetic algorithm python library,

2021.

[78] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. Deep

inverse rendering for high-resolution SVBRDF estimation from an arbitrary

number of images. ACM Trans. Graph., 38(4), 2019.

[79] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emil-

iano Gambaretto, Christian Gagné, and Jean-François Lalonde. Learn-

ing to predict indoor illumination from a single image. arXiv preprint

arXiv:1704.00090, 2017.

[80] Marc-André Gardner, Yannick Hold-Geoffroy, Kalyan Sunkavalli, Christian

Gagné, and Jean-François Lalonde. Deep parametric indoor lighting estima-

tion. In PICCV, 2019.

[81] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, and Jean-

François Lalonde. Fast spatially-varying indoor lighting estimation. In CVPR,

2019.

BIBLIOGRAPHY 181

[82] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm

of artistic style. arXiv:1508.06576, 2015.

[83] Stamatios Georgoulis, Konstantinos Rematas, Tobias Ritschel, Mario Fritz,

Tinne Tuytelaars, and Luc Van Gool. What is around the camera? In ICCV,

2017.

[84] Stamatios Georgoulis, Konstantinos Rematas, Tobias Ritschel, Efstratios

Gavves, Mario Fritz, Luc Van Gool, and Tinne Tuytelaars. Reflectance and

natural illumination from single-material specular objects using deep learning.

IEEE PAMI, 40(8), 2017.

[85] Lily Goli, Cody Reading, Silvia Sellán, Alec Jacobson, and Andrea Tagliasac-

chi. Bayes’ rays: Uncertainty quantification for neural radiance fields. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 20061–20070, 2024.

[86] Ian Goodfellow. Deep learning, 2016.

[87] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[88] Henri Gouraud. Computer display of curved surfaces. The University of Utah,

1971.

[89] Josif Grabocka, Randolf Scholz, and Lars Schmidt-Thieme. Learning surro-

gate losses. arXiv preprint arXiv:1905.10108, 2019.

[90] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanima-

tor: Fast neural network emulation and control of physics-based models. In

Proc. SIGGRAPH, pages 9–20, 1998.

[91] Darya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk,

and Mashhuda Glencross. Brdf representation and acquisition. 35(2), 2016.

BIBLIOGRAPHY 182

[92] Paul Guerrero, Miloš Hašan, Kalyan Sunkavalli, Radomı́r Měch, Tamy

Boubekeur, and Niloy J Mitra. Matformer: A generative model for procedural

materials. arXiv preprint arXiv:2207.01044, 2022.

[93] Julia Guerrero-Viu, Michael Fischer, Iliyan Georgiev, Elena Garces, Diego

Gutierrez, Belen Masia, and Valentin Deschaintre. Fine-grained spatially

varying material selection in images. arXiv preprint arXiv:2506.09023, 2025.

[94] Emil Julius Gumbel. Statistical theory of extreme values and some practical

applications: a series of lectures, volume 33. US Government Printing Office,

1954.

[95] Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang

Zhao. Materialgan: reflectance capture using a generative svBRDF model.

arXiv:2010.00114, 2020.

[96] H-M Gutmann. A radial basis function method for global optimization. J

global optimization, 19(3):201–227, 2001.

[97] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv:1609.09106,

2016.

[98] John K Haas. A history of the unity game engine. Diss. WORCESTER

POLYTECHNIC INSTITUTE, 483:484, 2014.

[99] Marc Habermann, Lingjie Liu, Weipeng Xu, Michael Zollhoefer, Gerard

Pons-Moll, and Christian Theobalt. Real-time deep dynamic characters. ACM

Trans. Graph., 40(4):1–16, 2021.

[100] John Michael Hammersley and JG Mauldon. General principles of antithetic

variates. In Mathematical proceedings of the Cambridge philosophical society,

volume 52, 1956.

[101] Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint

arXiv:1604.00772, 2016.

BIBLIOGRAPHY 183

[102] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize bet-

ter: Stability of stochastic gradient descent. In International conference on

machine learning, pages 1225–1234. PMLR, 2016.

[103] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE international conference on computer vision, pages

1026–1034, 2015.

[104] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[105] Eric Heitz, Laurent Belcour, and Thomas Chambon. Iterative α-(de) blend-

ing: A minimalist deterministic diffusion model. In ACM SIGGRAPH 2023

Conference Proceedings, pages 1–8, 2023.

[106] Philipp Henzler, Niloy Mitra, and Tobias Ritschel. Escaping plato’s cave

using adversarial training: 3d shape from unstructured 2d image collections.

In Proc. ICCV, 2019.

[107] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learning a neural 3d

texture space from 2d exemplars. In CVPR, 2020.

[108] Philipp Henzler, Valentin Deschaintre, Niloy J Mitra, and Tobias Ritschel.

Generative modelling of brdf textures from flash images. ACM Trans Graph

(Proc SIGGRAPH Asia), 40(5), 2021.

[109] Sebastian Herholz, Oskar Elek, Jiřı́ Vorba, Hendrik Lensch, and Jaroslav

Křivánek. Product importance sampling for light transport path guiding. 35

(4), 2016.

[110] Lukas Hermanns and Tobias Alexander Franke. Screen space cone tracing for

glossy reflections. In ACM SIGGRAPH 2014 Posters, pages 1–1. 2014.

BIBLIOGRAPHY 184

[111] Pedro Hermosilla, Sebastian Maisch, Tobias Ritschel, and Timo Ropinski.

Deep-learning the latent space of light transport. Comp. Graph. Forum, 38(4),

2019.

[112] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H

Salesin. Image analogies. In Seminal Graphics Papers: Pushing the Bound-

aries, Volume 2, pages 557–570. 2023.

[113] S Hochreiter. Long short-term memory. Neural Computation MIT-Press,

1997.

[114] Yannick Hold-Geoffroy, Akshaya Athawale, and Jean-François Lalonde. Deep

sky modeling for single image outdoor lighting estimation. In CVPR, 2019.

[115] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes

with differentiable physics. arXiv preprint arXiv:2001.07457, 2020.

[116] John H Holland. Genetic algorithms and the optimal allocation of trials. SIAM

journal on computing, 2(2):88–105, 1973.

[117] Holger H Hoos and Thomas Stutzle. Evaluating las vegas algorithms-pitfalls

and remedies. arXiv preprint arXiv:1301.7383, 2013.

[118] Anita Hu, Nishkrit Desai, Hassan Abu Alhaija, Seung Wook Kim, and Maria

Shugrina. Diffusion texture painting. In ACM SIGGRAPH 2024 Conference

Papers, pages 1–12, 2024.

[119] Bingyang Hu, Jie Guo, Yanjun Chen, Mengtian Li, and Yanwen Guo. Deep-

BRDF: A deep representation for manipulating measured brdf. 39(2), 2020.

[120] Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tieniu Tan, and Jian

Sun. Meta-sr: A magnification-arbitrary network for super-resolution. In

CVPR, 2019.

[121] Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin De-

schaintre. Node graph optimization using differentiable proxies. In ACM

SIGGRAPH, 2022.

BIBLIOGRAPHY 185

[122] Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rush-

meier. An inverse procedural modeling pipeline for svbrdf maps. ACM Trans.

Graph., 41(2):1–17, 2022.

[123] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan

Ragan-Kelley, and Frédo Durand. Difftaichi: Differentiable programming for

physical simulation. arXiv preprint arXiv:1910.00935, 2019.

[124] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao.

2d gaussian splatting for geometrically accurate radiance fields. In ACM

SIGGRAPH 2024 Conference Papers, pages 1–11, 2024.

[125] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with

adaptive instance normalization. In ICCV, 2017.

[126] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science

& Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[127] Yuchi Huo, Rui Wang, Ruzahng Zheng, Hualin Xu, Hujun Bao, and Sung-Eui

Yoon. Adaptive incident radiance field sampling and reconstruction using

deep reinforcement learning. ACM Trans. Graph., 39(1):1–17, 2020.

[128] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised learning of shape

and pose with differentiable point clouds. NeuRIPS, 31, 2018.

[129] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.

[130] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David,

Delio Vicini, Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy,

and Ziyi Zhang. Mitsuba 3 renderer, 2022, 2022.

[131] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. Dr.jit:

A just-in-time compiler for differentiable rendering. ACM Trans Graph. (Proc.

SIGGRAPH), 41(4), 2022.

BIBLIOGRAPHY 186

[132] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. Dr. jit:

A just-in-time compiler for differentiable rendering. ACM Transactions on

Graphics (TOG), 41(4):1–19, 2022.

[133] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David,

Delio Vicini, Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy,

and Ziyi Zhang. Mitsuba 3 renderer, 2022. https://mitsuba-renderer.org.

[134] Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of

derivative-free optimization. Advances in Neural Information Processing

Systems, 25, 2012.

[135] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff: Dif-

ferentiable rendering of signed distance fields for 3d shape optimization. In

Proc. CVPR, 2020.

[136] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I

Jordan. How to escape saddle points efficiently. In International Conference

on Machine Learning, pages 1724–1732. PMLR, 2017.

[137] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global

optimization of expensive black-box functions. J Global optimization, 13(4):

455–92, 1998.

[138] Bela Julesz. Experiments in the visual perception of texture. Scientific

American, 232(4), 1975.

[139] Herman Kahn. Random sampling (monte carlo) techniques in neutron atten-

uation problems. i. Nucleonics (US) Ceased publication, 6(See also NSA

3-990), 1950.

[140] James T Kajiya. The rendering equation. In Proc. SIGGRAPH, 1986.

[141] Kaizhang Kang, Zimin Chen, Jiaping Wang, Kun Zhou, and Hongzhi Wu.

Efficient reflectance capture using an autoencoder. ACM Trans. Graph., 37

(4), 2018.

BIBLIOGRAPHY 187

[142] Kaizhang Kang, Cihui Xie, Chengan He, Mingqi Yi, Minyi Gu, Zimin Chen,

Kun Zhou, and Hongzhi Wu. Learning efficient illumination multiplexing

for joint capture of reflectance and shape. ACM Trans. Graph., 38(6):165–1,

2019.

[143] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3D mesh

renderer. In Proc. CVPR, pages 3907–16, 2018.

[144] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka,

Wadim Kehl, and Adrien Gaidon. Differentiable rendering: A survey. arXiv

preprint arXiv:2006.12057, 2020.

[145] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka.

A simple and robust mutation strategy for the metropolis light transport

algorithm. In Computer Graphics Forum, volume 21, pages 531–540. Wiley

Online Library, 2002.

[146] Alexander Keller, Pascal Grittmann, Jiřı́ Vorba, Iliyan Georgiev, Martin Šik,

Eugene d’Eon, Pascal Gautron, Petr Vévoda, and Ivo Kondapaneni. Advances

in monte carlo rendering: The legacy of jaroslav křivánek. In SIGGRAPH

Courses, 2020.

[147] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Dret-

takis. 3d gaussian splatting for real-time radiance field rendering. ACM Trans.

Graph., 42(4):139–1, 2023.

[148] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[149] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv:1412.6980, 2014.

[150] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible

1x1 convolutions. Advances in neural information processing systems, 31,

2018.

BIBLIOGRAPHY 188

[151] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and

the local reparameterization trick. Advances in neural information processing

systems, 28, 2015.

[152] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by

simulated annealing. science, 220(4598):671–680, 1983.

[153] Thomas Kiser, Michael Eigensatz, Minh Man Nguyen, Philippe Bompas,

and Mark Pauly. Architectural caustics—controlling light with geometry. In

Advances in architectural geometry 2012, pages 91–106. Springer, 2013.

[154] Alexandr Kuznetsov, Milos Hasan, Zexiang Xu, Ling-Qi Yan, Bruce Walter,

Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. Learning

generative models for rendering specular microgeometry. ACM Trans. Graph.,

38(6), 2019.

[155] Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi

Ramamoorthi. Neumip: multi-resolution neural materials. ACM Trans. Graph.

(Proc. SIGGRAPH), 40(4), 2021.

[156] Eric P Lafortune and Yves D Willems. A 5d tree to reduce the variance of

monte carlo ray tracing. In EGSR, pages 11–20, 1995.

[157] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehti-

nen, and Timo Aila. Modular primitives for high-performance differentiable

rendering. ACM Trans Graph, 39(6), 2020.

[158] Robert Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard,

Chris Lu, Satinder Singh, and Sebastian Flennerhag. Discovering evolution

strategies via meta-black-box optimization. In Proceedings of the Companion

Conference on Genetic and Evolutionary Computation, pages 29–30, 2023.

[159] Averill M Law, W David Kelton, and W David Kelton. Simulation modeling

and analysis, volume 3. Mcgraw-hill New York, 2007.

BIBLIOGRAPHY 189

[160] Qiqin Le, Jiamu Bu, Yanke Qu, Bo Zhu, and Tao Du. Computational biomimet-

ics of winged seeds. ACM Transactions on Graphics (TOG), 43(6):1–13, 2024.

[161] Quentin Le Lidec, Ivan Laptev, Cordelia Schmid, and Justin Carpentier. Dif-

ferentiable rendering with perturbed optimizers. NeurIPS, 34, 2021.

[162] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/, 1998.

[163] Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. Reparameterization gradient

for non-differentiable models. Proc. NeurIPS, 31, 2018.

[164] Hendrik PA Lensch, Jan Kautz, Michael Goesele, Wolfgang Heidrich, and

Hans-Peter Seidel. Image-based reconstruction of spatial appearance and

geometric detail. ACM Trans. Graph., 22(2), 2003.

[165] Kenneth Levenberg. A method for the solution of certain non-linear problems

in least squares. Quarterly of applied mathematics, 2(2):164–168, 1944.

[166] Beichen Li, Liang Shi, and Wojciech Matusik. End-to-end procedural material

capture with proxy-free mixed-integer optimization. ACM Transactions on

Graphics (TOG), 42(4):1–15, 2023.

[167] Beichen Li, Yiwei Hu, Paul Guerrero, Milos Hasan, Liang Shi, Valentin

Deschaintre, and Wojciech Matusik. Procedural material generation with

reinforcement learning. ACM Transactions on Graphics (TOG), 43(6):1–14,

2024.

[168] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.

Visualizing the loss landscape of neural nets. Advances in neural information

processing systems, 31, 2018.

[169] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differen-

tiable Monte Carlo ray tracing through edge sampling. ACM Trans Graph.,

37(6), 2018.

BIBLIOGRAPHY 190

[170] Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley.

Differentiable vector graphics rasterization for editing and learning. ACM

Trans. Graph., 39(6):1–15, 2020.

[171] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and

Manmohan Chandraker. Inverse rendering for complex indoor scenes: Shape,

spatially-varying lighting and svbrdf from a single image. In Proc. CVPR,

2020.

[172] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to

learn quickly for few-shot learning. arXiv:1707.09835, 2017.

[173] Selena Zihan Ling, Nicholas Sharp, and Alec Jacobson. Vectoradam for

rotation equivariant geometry optimization. Advances in Neural Information

Processing Systems, 35:4111–4122, 2022.

[174] Chen Liu, Michael Fischer, and Tobias Ritschel. Learning to learn and sample

brdfs. In Computer Graphics Forum, volume 42, pages 201–211. Wiley

Online Library, 2023.

[175] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large

scale optimization. Mathematical programming, 45(1):503–528, 1989.

[176] Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien.

Material editing using a physically based rendering network. In CVPR, 2017.

[177] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual in-

struction tuning. Advances in neural information processing systems, 36,

2024.

[178] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and

Zhaopeng Cui. Dist: Rendering deep implicit signed distance function with

differentiable sphere tracing. In Proc. CVPR, 2020.

BIBLIOGRAPHY 191

[179] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differen-

tiable renderer for image-based 3D reasoning. In Proc. ICCV, pages 7708–17,

2019.

[180] Tom Lokovic and Eric Veach. Deep shadow maps. In Seminal Graphics

Papers: Pushing the Boundaries, Volume 2, pages 311–318. 2023.

[181] Stephen Lombardi and Ko Nishino. Reflectance and natural illumination from

a single image. In ECCV. Springer, 2012.

[182] Matthew M Loper and Michael J Black. Opendr: An approximate differen-

tiable renderer. In Proc. ECCV, pages 154–169. Springer, 2014.

[183] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. Reparameterizing

discontinuous integrands for differentiable rendering. ACM Trans. Graph., 38

(6):1–14, 2019.

[184] Linjie Lyu, Marc Habermann, Lingjie Liu, Ayush Tewari, Christian Theobalt,

et al. Efficient and differentiable shadow computation for inverse problems.

In Proc. ICCV, 2021.

[185] Joe Marks, Brad Andalman, Paul A Beardsley, William Freeman, Sarah

Gibson, Jessica Hodgins, Thomas Kang, Brian Mirtich, Hanspeter Pfister,

Wheeler Ruml, et al. Design galleries: A general approach to setting pa-

rameters for computer graphics and animation. In Proc. SIGGRAPH, pages

389–400, 1997.

[186] Donald W Marquardt. An algorithm for least-squares estimation of nonlinear

parameters. Journal of the society for Industrial and Applied Mathematics, 11

(2):431–441, 1963.

[187] Stephen R Marschner and Donald P Greenberg. Inverse lighting for photogra-

phy. In Color and Imaging Conference, volume 5, pages 262–265. Society of

Imaging Science and Technology, 1997.

BIBLIOGRAPHY 192

[188] Stephen Robert Marschner. Inverse rendering for computer graphics. Cornell

University, 1998.

[189] Wojciech Matusik. A data-driven reflectance model. PhD thesis, Mas-

sachusetts Institute of Technology, 2003.

[190] Maxim Maximov, Laura Leal-Taixé, Mario Fritz, and Tobias Ritschel. Deep

appearance maps. In ICCV, 2019.

[191] Morgan McGuire and Michael Mara. Efficient gpu screen-space ray tracing.

Journal of Computer Graphics Techniques (JCGT), 3(4):73–85, 2014.

[192] Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman.

Gradients are not all you need. arXiv preprint arXiv:2111.05803, 2021.

[193] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,

Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance

fields for view synthesis. In ECCV, 2020.

[194] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,

Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance

fields for view synthesis. Communications of the ACM, 65(1), 2021.

[195] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte

carlo gradient estimation in machine learning. J. Mach. Learn. Res., 21(132):

1–62, 2020.

[196] Louis Montaut, Quentin Le Lidec, Antoine Bambade, Vladimir Petrik, Josef

Sivic, and Justin Carpentier. Differentiable collision detection: a randomized

smoothing approach. In 2023 IEEE International Conference on Robotics

and Automation (ICRA), pages 3240–3246. IEEE, 2023.

[197] Joep Moritz, Stuart James, Tom SF Haines, Tobias Ritschel, and Tim Weyrich.

Texture stationarization: Turning photos into tileable textures. In Computer

graphics forum, volume 36, pages 177–188. Wiley Online Library, 2017.

BIBLIOGRAPHY 193

[198] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei,

Josh Tenenbaum, and Daniel L Yamins. Flexible neural representation for

physics prediction. Proc. NeurIPS, 31, 2018.

[199] Thomas Müller, Markus Gross, and Jan Novák. Practical path guiding for

efficient light-transport simulation. In Comp. Graph. Forum, volume 36, 2017.

[200] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan

Novák. Neural importance sampling. ACM Trans. Graph. (Proc, SIGGRAPH),

38(5), 2019.

[201] Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. Real-

time neural radiance caching for path tracing. ACM Trans. Graph. (proc

SIGGRAPH), 40(4), 2021.

[202] Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller.

Real-time neural radiance caching for path tracing. arXiv preprint

arXiv:2106.12372, 2021.

[203] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. In-

stant neural graphics primitives with a multiresolution hash encoding. ACM

Transactions on Graphics (ToG), 41(4):1–15, 2022.

[204] Andreas Munk, Adam Ścibior, Atılım Güneş Baydin, Andrew Stewart,

Goran Fernlund, Anoush Poursartip, and Frank Wood. Deep probabilis-

tic surrogate networks for universal simulator approximation. arXiv preprint

arXiv:1910.11950, 2019.

[205] Peter Naglič, Franjo Pernuš, Boštjan Likar, and Miran Bürmen. Lookup table-

based sampling of the phase function for monte carlo simulations of light

propagation in turbid media. Biomedical Optics Express, 8(3):1895–1910,

2017.

[206] Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, H-P Seidel, and

BIBLIOGRAPHY 194

Tobias Ritschel. Deep shading: convolutional neural networks for screen

space shading. In Comp. Graph. Forum, volume 36, pages 65–78, 2017.

[207] Giljoo Nam, Joo Ho Lee, Diego Gutierrez, and Min H Kim. Practical svbrdf

acquisition of 3d objects with unstructured flash photography. ACM Trans.

Graph., 37(6), 2018.

[208] Jiřı́ Navrátil, Alan King, Jesus Rios, Georgios Kollias, Ruben Torrado, and

Andrés Codas. Accelerating physics-based simulations using end-to-end

neural network proxies: An application in oil reservoir modeling. Frontiers in

big Data, 2:33, 2019.

[209] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of

convex functions. Foundations of Computational Mathematics, 17:527–566,

2017.

[210] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental analysis of

brdf models. Rendering Techniques, 2005.

[211] Chuong H Nguyen, Tobias Ritschel, Karol Myszkowski, Elmar Eisemann,

and Hans-Peter Seidel. 3d material style transfer. In Computer Graphics

Forum, volume 31, pages 431–438. Wiley Online Library, 2012.

[212] Jack Nguyen. spsa. https://github.com/SimpleArt/spsa, 2022.

[213] Thu Nguyen-Phuoc, Gabriel Schwartz, Yuting Ye, Stephen Lombardi, and Lei

Xiao. Alteredavatar: Stylizing dynamic 3d avatars with fast style adaptation.

arXiv preprint arXiv:2305.19245, 2023.

[214] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-

learning algorithms. arXiv:1803.02999, 2018.

[215] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large steps in inverse

rendering of geometry. ACM Transactions on Graphics (Proceedings of

SIGGRAPH Asia), 40(6), December 2021. doi: 10.1145/3478513.3480501.

https://github.com/SimpleArt/spsa

BIBLIOGRAPHY 195

[216] Baptiste Nicolet, Fabrice Rousselle, Jan Novak, Alexander Keller, Wenzel

Jakob, and Thomas Müller. Recursive control variates for inverse rendering.

ACM Transactions on Graphics (TOG), 42(4):1–13, 2023.

[217] Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ramamoorthi. On optimal,

minimal brdf sampling for reflectance acquisition. ACM Trans. Graph. (Proc.

SIGGRAPH Asia), 34(6), 2015.

[218] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba

2: A retargetable forward and inverse renderer. Transactions on Graphics

(Proceedings of SIGGRAPH Asia), 38(6), December 2019. doi: 10.1145/

3355089.3356498.

[219] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba

2: A retargetable forward and inverse renderer. ACM Trans. Graph., 38(6),

2019.

[220] Merlin Nimier-David, Sébastien Speierer, Benoı̂t Ruiz, and Wenzel Jakob.

Radiative backpropagation: an adjoint method for lightning-fast differentiable

rendering. ACM Trans Graph, 39(4), 2020.

[221] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[222] Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. Fast hierar-

chical importance sampling with blue noise properties. ACM Transactions on

Graphics (TOG), 23(3):488–495, 2004.

[223] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

et al. Training language models to follow instructions with human feedback.

Advances in neural information processing systems, 35:27730–27744, 2022.

[224] Art Owen and Yi Zhou. Safe and effective importance sampling. J of the

American Statistical Association, 95(449), 2000.

BIBLIOGRAPHY 196

[225] Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon Rusinkiewicz, Woj-

ciech Matusik, and Tim Weyrich. Goal-based caustics. In Computer Graphics

Forum, volume 30, pages 503–511. Wiley Online Library, 2011.

[226] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and

Steven Lovegrove. DeepSDF: Learning continuous signed distance functions

for shape representation. In CVPR, 2019.

[227] Jeong Joon Park, Aleksander Holynski, and Steven M Seitz. Seeing the world

in a bag of chips. In CVPR, 2020.

[228] Keunhong Park, Philipp Henzler, Ben Mildenhall, Jonathan T Barron, and

Ricardo Martin-Brualla. Camp: Camera preconditioning for neural radiance

fields. ACM Transactions on Graphics (TOG), 42(6):1–11, 2023.

[229] Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Minimum width for

universal approximation. arXiv preprint arXiv:2006.08859, 2020.

[230] Konstantinos E Parsopoulos and Michael N. Vrahatis. Recent approaches to

global optimization problems through particle swarm optimization. Natural

computing, 1(2):235–306, 2002.

[231] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam

Lerer. Automatic differentiation in pytorch. 2017.

[232] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,

high-performance deep learning library. In NeurIPS. 2019.

[233] Yash Patel, Tomáš Hodaň, and Jiřı́ Matas. Learning surrogates via deep

embedding. In Proc. ECCV, pages 205–221. Springer, 2020.

BIBLIOGRAPHY 197

[234] Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):

287–296, 1985.

[235] Ken Perlin. Improving noise. In Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, pages 681–682, 2002.

[236] Felix Petersen, Amit H. Bermano, Oliver Deussen, and Daniel Cohen-Or.

Pix2vex: Image-to-geometry reconstruction using a smooth differentiable

renderer, 2019.

[237] Felix Petersen, Bastian Goldluecke, Christian Borgelt, and Oliver Deussen.

Gendr: A generalized differentiable renderer. In Proc. CVPR, pages 4002–

4011, 2022.

[238] André Susano Pinto, Alexander Kolesnikov, Yuge Shi, Lucas Beyer, and Xiao-

hua Zhai. Tuning computer vision models with task rewards. In International

Conference on Machine Learning, pages 33229–33239. PMLR, 2023.

[239] Boris T Polyak. Some methods of speeding up the convergence of iteration

methods. Ussr computational mathematics and mathematical physics, 4(5):

1–17, 1964.

[240] Javier Portilla and Eero P Simoncelli. A parametric texture model based on

joint statistics of complex wavelet coefficients. Int J Computer Vision, 40(1),

2000.

[241] Michael JD Powell. Algorithms for nonlinear constraints that use lagrangian

functions. Mathematical programming, 14:224–248, 1978.

[242] Michael JD Powell. A direct search optimization method that models the

objective and constraint functions by linear interpolation. In Advances in

optimization and numerical analysis, pages 51–67. Springer, 1994.

[243] Arcot J Preetham, Peter Shirley, and Brian Smits. A practical analytic model

for daylight. In Proceedings of the 26th annual conference on Computer

graphics and interactive techniques, pages 91–100, 1999.

BIBLIOGRAPHY 198

[244] William H Press. Numerical recipes 3rd edition: The art of scientific comput-

ing. Cambridge university press, 2007.

[245] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

652–660, 2017.

[246] Nestor V Queipo, Raphael T Haftka, Wei Shyy, Tushar Goel, Rajkumar

Vaidyanathan, and P Kevin Tucker. Surrogate-based analysis and optimization.

Progress in aerospace sciences, 41(1):1–28, 2005.

[247] Lara Raad, Axel Davy, Agnès Desolneux, and Jean-Michel Morel. A survey

of exemplar-based texture synthesis. Annals of Mathematical Sciences and

Applications, 3(1), 2018.

[248] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin,

Fred Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias

of neural networks. In International Conference on Machine Learning, pages

5301–5310. PMLR, 2019.

[249] Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. Neural BTF

compression and interpolation. In Comp. Graph. Forum, volume 38, 2019.

[250] Gilles Rainer, Abhijeet Ghosh, Wenzel Jakob, and Tim Weyrich. Unified

neural encoding of btfs. 39(2), 2020.

[251] Tom Rainforth, Rob Cornish, Hongseok Yang, Andrew Warrington, and Frank

Wood. On nesting Monte Carlo estimators. In Proc. ICML, pages 4267–4276.

PMLR, 2018.

[252] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for

inverse rendering. In Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, pages 117–128, 2001.

BIBLIOGRAPHY 199

[253] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot

learning. 2016.

[254] Pradyumna Reddy, Paul Guerrero, Matt Fisher, Wilmot Li, and Niloy J Mi-

tra. Discovering pattern structure using differentiable compositing. ACM

Transactions on Graphics (TOG), 39(6):1–15, 2020.

[255] Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. Im2vec:

Synthesizing vector graphics without vector supervision. In Proc. CVPR,

2021.

[256] Konstantinos Rematas, Tobias Ritschel, Mario Fritz, Efstratios Gavves, and

Tinne Tuytelaars. Deep reflectance maps. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 4508–4516, 2016.

[257] Alex Renda, Yishen Chen, Charith Mendis, and Michael Carbin. Difftune:

Optimizing cpu simulator parameters with learned differentiable surrogates. In

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 442–455. IEEE, 2020.

[258] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing

flows. In ICML, 2015.

[259] Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and

Christian Theobalt. A versatile scene model with differentiable visibility

applied to generative pose estimation. In Proc. ICCV, 2015.

[260] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a

review of algorithms and comparison of software implementations. J Global

Optimization, 56(3):1247–1293, 2013.

[261] Tobias Ritschel, Thorsten Grosch, Min H Kim, H-P Seidel, Carsten Dachs-

bacher, and Jan Kautz. Imperfect shadow maps for efficient computation of

indirect illumination. ACM transactions on graphics (tog), 27(5):1–8, 2008.

BIBLIOGRAPHY 200

[262] Carlos Rodriguez-Pardo and Elena Garces. Seamlessgan: Self-supervised

synthesis of tileable texture maps. IEEE Transactions on Visualization and

Computer Graphics, 29(6):2914–2925, 2022.

[263] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and

Björn Ommer. High-resolution image synthesis with latent diffusion models.

In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 10684–10695, 2022.

[264] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In Medical image computing

and computer-assisted intervention–MICCAI 2015: 18th international confer-

ence, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages

234–241. Springer, 2015.

[265] Scott D Roth. Ray casting for modeling solids. Computer graphics and image

processing, 18(2):109–144, 1982.

[266] Szymon M Rusinkiewicz. A new change of variables for efficient brdf repre-

sentation. In EGWR, 1998.

[267] Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-

Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed,

Judy Hoffman, et al. Hiera: A hierarchical vision transformer without the

bells-and-whistles. In International Conference on Machine Learning, pages

29441–29454. PMLR, 2023.

[268] Paul Sanzenbacher, Lars Mescheder, and Andreas Geiger. Learning neural

light transport. arXiv:2006.03427, 2020.

[269] Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for

deep neural networks. In Conference on Robot Learning, pages 317–335.

PMLR, 2018.

BIBLIOGRAPHY 201

[270] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gra-

dient estimation using stochastic computation graphs. Advances in neural

information processing systems, 28, 2015.

[271] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[272] Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly.

High-contrast computational caustic design. ACM Transactions on Graphics

(TOG), 33(4):1–11, 2014.

[273] Prafull Sharma, Julien Philip, Michaël Gharbi, Bill Freeman, Fredo Durand,

and Valentin Deschaintre. Materialistic: Selecting similar materials in images.

ACM Transactions on Graphics, 42(4), 2023.

[274] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate

of relu networks in terms of width and depth. Journal de Mathématiques

Pures et Appliquées, 157:101–135, 2022.

[275] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur,

Radomir Mech, and Wojciech Matusik. Match: differentiable material graphs

for procedural material capture. ACM Trans. Graph., 39(6):1–15, 2020.

[276] Sergey Shirobokov, Vladislav Belavin, Michael Kagan, Andrei Ustyuzhanin,

and Atilim Gunes Baydin. Black-box optimization with local generative

surrogates. Proc. NeurIPS, 33:14650–14662, 2020.

[277] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[278] Ping Tat Sin, Hiu Fung Ng, and Hong Va Leong. Neural proxy: Empowering

neural volume rendering for animation. In Proc. Pacific Graphics, pages 1–6,

2021.

BIBLIOGRAPHY 202

[279] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene represen-

tation networks: Continuous 3d-structure-aware neural scene representations.

arXiv:1906.01618, 2019.

[280] Vincent Sitzmann, Eric R Chan, Richard Tucker, Noah Snavely, and

Gordon Wetzstein. MetaSDF: Meta-learning signed distance functions.

arXiv:2006.09662, 2020.

[281] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and

Fredo Durand. Light field networks: Neural scene representations with single-

evaluation rendering. NeurIPS, 34, 2021.

[282] Shuran Song and Thomas Funkhouser. Neural illumination: Lighting predic-

tion for indoor environments. In CVPR, 2019.

[283] James C Spall. Multivariate stochastic approximation using a simultaneous

perturbation gradient approximation. IEEE transactions on automatic control,

37(3):332–341, 1992.

[284] Pratul P Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T Barron,

Richard Tucker, and Noah Snavely. Lighthouse: Predicting lighting volumes

for spatially-coherent illumination. In CVPR, 2020.

[285] Joe Staines and David Barber. Variational optimization. arXiv preprint

arXiv:1212.4507, 2012.

[286] Joe Staines and David Barber. Optimization by variational bounding. In

ESANN, 2013.

[287] Jos Stam. Computing light transport gradients using the adjoint method. arXiv

preprint arXiv:2006.15059, 2020.

[288] Marc Stamminger and George Drettakis. Perspective shadow maps. In Pro-

ceedings of the 29th annual conference on Computer graphics and interactive

techniques, pages 557–562, 2002.

BIBLIOGRAPHY 203

[289] Adéla Šubrtová, Michal Lukáč, Jan Čech, David Futschik, Eli Shechtman,

and Daniel Sỳkora. Diffusion image analogies. In ACM SIGGRAPH 2023

Conference Proceedings, pages 1–10, 2023.

[290] Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differ-

entiable simulators give better policy gradients? In International Conference

on Machine Learning, pages 20668–20696. PMLR, 2022.

[291] Hyung Ju Terry Suh, Tao Pang, and Russ Tedrake. Bundled gradients through

contact via randomized smoothing. IEEE Robotics and Automation Letters, 7

(2):4000–4007, 2022.

[292] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approxima-

tion. Advances in neural information processing systems, 12, 1999.

[293] Alejandro Sztrajman, Gilles Rainer, Tobias Ritschel, and Tim Weyrich. Neu-

ral brdf representation and importance sampling. In Comp. Graph. Forum,

volume 40, 2021.

[294] Shufeng Tan and Michael L Mayrovouniotis. Reducing data dimensionality

through optimizing neural network inputs. AIChE Journal, 41(6), 1995.

[295] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil,

Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and

Ren Ng. Fourier features let networks learn high frequency functions in low

dimensional domains. Advances in Neural Information Processing Systems,

33:7537–7547, 2020.

[296] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P

Srinivasan, Jonathan T Barron, and Ren Ng. Learned initializations for

optimizing coordinate-based neural representations. In CVPR, 2021.

[297] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi,

Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih,

BIBLIOGRAPHY 204

Matthias Nießner, et al. State of the art on neural rendering. In Comp. Graph.

Forum, volume 39, 2020.

[298] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural

rendering: Image synthesis using neural textures. ACM Trans. Graph., 38(4):

1–12, 2019.

[299] Ethan Tseng, Felix Yu, Yuting Yang, Fahim Mannan, Karl ST Arnaud, Derek

Nowrouzezahrai, Jean-François Lalonde, and Felix Heide. Hyperparameter

optimization in black-box image processing using differentiable proxies. ACM

Trans. Graph., 38(4):27–1, 2019.

[300] Ethan Tseng, Yuxuan Zhang, Lars Jebe, Xuaner Zhang, Zhihao Xia, Yifei Fan,

Felix Heide, and Jiawen Chen. Neural photo-finishing. ACM Trans. Graph.,

41(6):1–15, 2022.

[301] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Jitendra Malik. Multi-

view supervision for single-view reconstruction via differentiable ray consis-

tency. In Proc. CVPR, 2017.

[302] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky.

Texture networks: Feed-forward synthesis of textures and stylized images. In

ICML, 2016.

[303] A Vaswani. Attention is all you need. Advances in Neural Information

Processing Systems, 2017.

[304] Eric Veach. Robust Monte Carlo methods for light transport simulation.

Stanford University, 1998.

[305] Eric Veach and Leonidas J Guibas. Metropolis light transport. In Proceed-

ings of the 24th annual conference on Computer graphics and interactive

techniques, pages 65–76, 1997.

BIBLIOGRAPHY 205

[306] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Path replay backpropaga-

tion: differentiating light paths using constant memory and linear time. ACM

Trans Graph, 40(4), 2021.

[307] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Differentiable signed

distance function rendering. ACM Transactions on Graphics (TOG), 41(4):

1–18, 2022.

[308] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren

Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for

scientific computing in python. Nature methods, 17(3):261–272, 2020.

[309] Jiřı́ Vorba, Ondřej Karlı́k, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek.

On-line learning of parametric mixture models for light transport simulation.

ACM Trans. Graph., 33(4), 2014.

[310] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance.

Microfacet models for refraction through rough surfaces. Rendering tech-

niques, 2007:18th, 2007.

[311] Xiaotao Wan, Joseph F Pekny, and Gintaras V Reklaitis. Simulation-based

optimization with surrogate models—application to supply chain management.

Computers & chemical engineering, 29(6):1317–1328, 2005.

[312] Shaofei Wang, Marko Mihajlovic, Qianli Ma, Andreas Geiger, and Siyu Tang.

MetaAvatar: Learning animatable clothed human models from few depth

images. arXiv:2106.11944, 2021.

[313] Zian Wang, Jonah Philion, Sanja Fidler, and Jan Kautz. Learning indoor

inverse rendering with 3d spatially-varying lighting. In CVPR, 2021.

[314] Gregory J Ward. Measuring and modeling anisotropic reflection. In Proceed-

ings of the 19th annual conference on Computer graphics and interactive

techniques, pages 265–272, 1992.

BIBLIOGRAPHY 206

[315] Henrique Weber, Donald Prévost, and Jean-François Lalonde. Learning to

estimate indoor lighting from 3d objects. In 3DV, 2018.

[316] Xin Wei, Guojun Chen, Yue Dong, Stephen Lin, and Xin Tong. Object-based

illumination estimation with rendering-aware neural networks. In ECCV,

2020.

[317] Michael Weinmann, Juergen Gall, and Reinhard Klein. Material classification

based on training data synthesized using a btf database. In Computer Vision–

ECCV 2014: 13th European Conference, Zurich, Switzerland, September

6-12, 2014, Proceedings, Part III 13, pages 156–171. Springer, 2014.

[318] Ronald J Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8:229–256, 1992.

[319] Chenghao Wu, Zahra Montazeri, and Tobias Ritschel. Learning to rasterize

differentiable. arXiv preprint arXiv:2211.13333, 2022.

[320] Chris Wyman and Scott Davis. Interactive image-space techniques for approx-

imating caustics. In Proceedings of the 2006 symposium on Interactive 3D

graphics and games, pages 153–160, 2006.

[321] Yang Xiang, Sylvain Gubian, Brian Suomela, and Julia Hoeng. Generalized

simulated annealing for global optimization: the gensa package. R J., 5(1):13,

2013.

[322] Jiankai Xing, Fujun Luan, Ling-Qi Yan, Xuejun Hu, Houde Qian, and Kun

Xu. Differentiable rendering using RGBXY derivatives and optimal transport.

ACM Trans. Graph., 41(6):1–13, 2022.

[323] Kai Yan, Fujun Luan, Miloš Hašan, Thibault Groueix, Valentin Deschaintre,

and Shuang Zhao. Psdr-room: Single photo to scene using differentiable

rendering. In SIGGRAPH Asia 2023 Conference Papers, pages 1–11, 2023.

BIBLIOGRAPHY 207

[324] Yuting Yang, Connelly Barnes, Andrew Adams, and Adam Finkelstein. A δ :

autodiff for discontinuous programs-applied to shaders. ACM Transactions

on Graphics (TOG), 41(4):1–24, 2022.

[325] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-

Hornung. Differentiable surface splatting for point-based geometry processing.

ACM Trans Graph, 38(6), 2019.

[326] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. Inverse global

illumination: Recovering reflectance models of real scenes from photographs.

In Proceedings of the 26th annual conference on Computer graphics and

interactive techniques, pages 215–224, 1999.

[327] Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. Monte

carlo estimators for differential light transport. ACM Trans Graph, 40(4),

2021.

[328] Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ra-

mamoorthi, and Shuang Zhao. A differential theory of radiative transfer. ACM

Trans. Graph., 38(6), 2019.

[329] Cheng Zhang, Bailey Miller, Kan Yan, Ioannis Gkioulekas, and Shuang Zhao.

Path-space differentiable rendering. ACM Trans. Graph., 39(4), 2020.

[330] Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. Antithetic

sampling for monte carlo differentiable rendering. ACM Trans. Graph., 40(4),

2021.

[331] Jiaxin Zhang, Hoang Tran, Dan Lu, and Guannan Zhang. A scalable evolution

strategy with directional gaussian smoothing for blackbox optimization. arXiv

preprint, 2020.

[332] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Ic-light github page, 2024.

BIBLIOGRAPHY 208

[333] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver

Wang. The unreasonable effectiveness of deep features as a perceptual met-

ric. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 586–595, 2018.

[334] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T

Freeman, and Jonathan T Barron. Nerfactor: Neural factorization of shape

and reflectance under an unknown illumination. arXiv:2106.01970, 2021.

[335] Quan Zheng and Matthias Zwicker. Learning to importance sample in primary

sample space. 38(2), 2019.

[336] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi,

Xuesen Zhang, and Wanli Ouyang. Econas: Finding proxies for economical

neural architecture search. In Proceedings of the IEEE/CVF Conference on

computer vision and pattern recognition, pages 11396–11404, 2020.

[337] Shilin Zhu, Zexiang Xu, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi.

Deep kernel density estimation for photon mapping. In Comp. Graph. Forum.

(proc. EGSR), volume 39, 2020.

[338] Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer,

Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. Photon-driven neural

reconstruction for path guiding. ACM Trans. Graph., 41(1), 2021.

[339] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon

Whiteson. Fast context adaptation via meta-learning. In International Confer-

ence on Machine Learning, pages 7693–7702. PMLR, 2019.

	Introduction
	Contributions
	Metappearance
	Plateau-Reduced Differentiable Path Tracing
	ZeroGrads: Learned Local Neural Surrogates

	Background
	A Primer on Computer Graphics
	Image Formation
	Visual Appearance
	The Rendering Equation
	Inverse Rendering

	Learning and Optimization
	Gradient-based Learning
	Meta-Learning and Learning to Learn

	Differentiable Rendering
	Problems with Rendering Gradients
	Differentiable Rasterization
	Differentiable Path Tracing
	Variational and Gradient-Free Optimization

	Metappearance: Meta-Learning for Visual Appearance Reproduction
	Introduction
	Previous Work
	Visual Appearance
	Learning

	Our Approach
	Problem statement
	General
	Over-fitting
	Fine-tuning
	Meta-learning

	Evaluation
	Applications
	Methodology
	Results

	Analysis
	Ablations
	Convergence
	Compression and Efficiency

	Conclusion

	Plateau-reduced Differentiable Path Tracing
	Introduction
	Background
	Rendering equation
	Path tracing
	Rasterization
	Other renderers

	Plateau-free Gradients
	The Plateau-free Rendering Equation
	Variance Reduction
	Adaptive bandwidth
	Implementation

	Experiments
	Methodology
	Results
	Timing
	Ablation

	Discussion
	Conclusion

	ZeroGrads: Learning Local Surrogate Losses for Non-Differentiable Graphics
	Introduction
	Previous Work
	Our approach
	Smooth objective
	Surrogate
	Localized surrogate loss
	Estimator
	Sampling
	Summary

	Evaluation
	Methods
	Protocol
	Tasks
	Results
	Higher Dimensions
	Gradient Variance Analysis
	Comparison to specific solutions
	Limitations and Failure Cases

	Conclusion

	Discussion and Outlook
	Limitations of the discussed methods
	Limitations of current inverse rendering setups
	New directions for inverse rendering

	Conclusions
	Appendices
	Appendix A: Metappearance
	Meta-Learning
	Networks and Implementation Details
	Textures
	BRDFs
	Stationary svBRDFs
	Non-Stationary svBRDFs
	Illumination
	Transport

	Appendix: Plateau-reduced Differentiable Path Tracing
	Hyperparameters
	Parameter Analysis
	Compatibility
	Additional Derivations

	Appendix: ZeroGrads - Learning Local Surrogate Losses For Non-Differentiable Graphics
	Implementation Details
	Hyperparameters

	Tasks
	Rendering settings and task descriptions

	Bibliography

