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Figure 1: We research methods to achieve faster convergence (left: Metappearance, Sec. 3.1), remove plateaus from the cost landscape (middle:
PRDPT, Sec. 3.2), and enable gradient-based optimization on forward models with unknown cost landscapes (right: ZeroGrads, Sec. 3.3).

Abstract
Gradient-based optimization has become the de-facto standard for optimization in the graphics community. However, it is rarely
questioned whether we can do “better” than simple gradient descent (GD) - in fact, it is easy to construct examples where GD is
easily outperformed by other methods. My research to date explores such scenarios from three distinct angles: Firstly, we show
that we can use meta-learning to optimize over GD itself, accelerating convergence times by several orders of magnitude at
similar visual quality. Secondly, we replace traditional (and sometimes uninformative) gradients by a variational formulation,
which enables differentiable rendering on problems where previous approaches did not converge due to plateaus in the cost
landscape. Finally, we explore the use of a neural network as a surrogate loss, which we can differentiate to yield low-variance
gradients on otherwise non-differentiable problems, enabling successful optimization of high-dimensional inverse problems.

1. Introduction

In the course of daily activities, a modern graphics researcher will
encounter numerous optimization challenges - be it the “learning”
of a neural network or solving an inverse problem like estimating
reflectance maps from a single flash image. Both tasks, for a success-
ful optimization outcome, require an efficient traversal of the cost
landscape and are typically addressed using (stochastic) gradient
descent, often in combination with optimizers like Adam. Yet, a
straightforward application of gradient descent can be inefficient,
for example due to regions of shallow slopes causing prolonged
convergence times, or plateaus – regions of zero gradient – halting
the optimization altogether. Moreover, gradient descent via auto-
matic differentiation (AD) is only applicable in scenarios where
the forward model is differentiable, which excludes a large part of
modern graphics tools, such as Blender or Photoshop.

My PhD research is dedicated to exploring these issues and iden-
tifying effective solutions. I commenced my doctorate studies at
University College London (UCL) in November 2020, under the
guidance of Tobias Ritschel and Niloy Mitra, and am now in the
third year of a four-year program. My experience includes a summer

internship at Meta Reality Labs in Redmond, Washington, and I will
be joining Adobe Research London as a research scientist intern this
summer, anticipating graduation from my doctorate studies in early
2025.

In this manuscript, I will first present an overview of relevant liter-
ature in Sec. 2, proceed to detail the projects undertaken during my
PhD in Sec. 3, and conclude with a discussion on the forthcoming
work and anticipated contributions in Sec. 4.

2. Related Work

Gradient Descent is a well-studied technique that has applications
in many real-world graphics and vision tasks. However, it is evident
that, on a plateau, gradient descent, by definition, will stall since
there is no gradient, effectively hindering or preventing successful
optimization altogether. It is trivial to construct such a scenario,
and plateaus are surprisingly common in real-life rendering appli-
cations such as rasterization (triangle- and depth-tests). Our work
Plateau-Reduced Differentiable Path Tracing (PRDPT) takes inspi-
ration from differentiable rasterization [LLCL19, PGBD22], where
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plateaus are smoothed by employing smooth approximations of
the step function, and derives a variational formulation [SB12] for
gradient descent in inverse path tracing, which leads to improved
convergence on inverse path tracing problems.

Derivative-Free Optimization (DFO), can instead be used when
we do not have information about the loss landscape and thus cannot
compute its gradient analytically. However, we have the ability to
“sample” this loss landscape by running the forward model with
a specific set of parameters that we would like to sample the loss
for, and then either try to estimate the gradient from these samples,
or employ search-based algorithms. Search-based methods (direct
search, genetic algorithms, CMA-ES, particle-swarm optimization,
simulated annealing, ...) often employ heuristic search criteria (e.g.,
the fitness and procreation rates in genetic algorithms) and thus do
not scale well to higher dimensions, and need a high number of
function evaluations for convergence. Gradient estimation methods,
on the other hand, suffer from high per-iteration cost (e.g., finite
differences, SPSA, PRDPT) and noisy gradient estimates, especially
in higher-dimensional settings.

Meta-learning finally transcends “regular” learning by optimiz-
ing over the optimization itself. In our case, we use the model-
agnostic meta learning (MAML) framework [FAL17], and opti-
mize for an ideal model initialization and per-parameter learning
rate [LZCL17]. This can be interpreted as learning from previous
optimization runs, i.e., building up intuition about the shape of the
loss landscape, and how it is best traversed. Moreover, the intricacies
of the algorithm allow for insights into data-sampling and real-time
training of models with sparse observations.

3. Current Work

3.1. Metappearance

The training paradigms for neural networks for visual appearance
reproduction can be grouped into three categories: I) general models,
where a network is trained on a large corpus of data and then can
run inference on unseen data points, II) over-fitting, where each
network is overfitted onto a single data point (e.g., a NeRF overfitted
to a scene), and III) fine-tuning, a hybrid of both, where a general
model’s prediction is quickly overfitted onto a specific datapoint.
General models are fast as they perform feed-forward inference, but
often lack accuracy, as they must compress the entire dataset into a
limited set of weights, whereas overfitted models usually are very
accurate, but slow to train and, once trained, not adaptable anymore.

In Metappearance [FR22], we employ meta-learning to combine
the advantages of both methods: the fast forward-times of general
networks and their applicability to new, unseen datapoints with the
accuracy and high quality of overfitted networks. Metappearance
employs a nested optimization loop: in the inner-loop, we randomly
sample an optimization task (e.g., overfitting an MLP to a BRDF)
and perform a small number (≤ 10) of gradient descent steps to-
wards the reference solution for this task. In the subsequent outer
loop, we then compute the gradient of the resulting network w.r.t. its
initialization – the “meta-gradient” – and change the initialization
accordingly, such that the next inner-loop iteration yields improved
performance. By iterating this process over many random-sampled
optimization tasks (e.g., overfitting all MERL BRDFs), our meta-
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Figure 2: Convergence at 25, 50 and 75% of the inner-loop gradient
steps (columns). Metappearance faithfully encodes the reference at
interactive runtimes.

learned network can learn to encode strong data-specific priors into
its initialization (mimicking the generality principle from general
networks). Moreover, the meta-learned network is forced to make do
with only a small number of gradient descent steps, leading to fast
convergence, and is explicitly encouraged to provide high-fidelity
output through the meta gradient descent. An often-overlooked
aspect of this algorithm is that it also encourages high-quality re-
productions with scarce data: if a GD step in the inner-loop uses
batchsize b, and we perform k such steps, the total number of sam-
ples seen by the learner is kb, which – for the case of MERL BRDFs
– is up to 99.5% less than overfitting the entire BRDF, and yet still
achieves similar visual quality.
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Figure 3: Quality-Speed
plot for the training of gen-
eral, overfitted, fine-tuned
and meta-learned models.

We show results on a wide va-
riety of visual appearance tasks
(textures, BRDFs, svBRDFs, illu-
mination, and even the full light
transport in a scene, cf. Fig. 2) and
extensively evaluate how Metap-
pearance compares to the tradi-
tional training paradigms in terms
of final visual fidelity and train-
ing time (Fig. 3). Metappearance
also serves as the foundation of a
subsequent publication where we
learn the ideal sampling-pattern

© 2024 The Author(s)
Eurographics Proceedings © 2024 The Eurographics Association.



Michael Fischer / Advanced Optimization for Machine Learning in Computer Graphics

for BRDF reconstruction from
sparse samples [LFR23].

3.2. Plateau-Reduced Differentiable Path Tracing

In addition to optimizing over the loss landscapes, we also need to
ensure that they are continuous and well-behaved. As detailed in
Sec. 2, this is often not the case in inverse rendering scenarios, as
we compare in image space only. A a small motivational example
is shown in Fig. 4: the task here is to move the blue sphere to its
reference position. Gradient-based optimization will converge only
in case a), whereas in b) and c) we are on a plateau, i.e., the image-
space loss does not change when moving the sphere, and a change
in parameter thus does not lead to a change in observed loss, leading
to a zero gradient and to the optimizer not being able to recover the
correct position.

Reference a) b) c)
Figure 4: An example of a plateau in the cost landscape: a) will
converge, b) and c) will not due to a plateau in the cost landscape.

To alleviate this problem, we take inspiration from differentiable
rendering and the concept of “differentiating through blurring”, and
propose to convolve the rendering equation with an additional blur
kernel. The rendering equation describes each pixel P as the integral
over the renderer R executed for all light paths x in Ω, i.e.,

P(θ) =
∫

Ω

R(x,θ)dx , (1)

We now introduce an additional blur kernel over the parameter
space Θ, leading to the smooth rendering equation:

Q(θ) = κ⋆P(θ) =
∫

Θ

κ(τ)
∫

Ω

R(x,θ− τ)dxdτ

=
∫

Θ×Ω

κ(τ)R(x,θ− τ)dxdτ , (2)

which has the gradient estimator

∂̂Q
∂θ

≈ 1
N

N

∑
i=1

∂κ

∂θ
(τi)︸ ︷︷ ︸

Diff. Kernel

P(θ− τi)︸ ︷︷ ︸
Renderer

, (3)

In our work PRDPT [FR23a], we derive an efficient estimator for
the smooth rendering equation and its gradient and show two pos-
sible implementations thereof. We employ a Gaussian smoothing
kernel, as it a) has infinite support, i.e., removes plateaus every-
where, b) has a C1-continuous derivative, and c) has a closed-form
probability density function (PDF), allowing importance-sampling
the derivative kernel via the inverse CDF method.

As our formulation captures the full behaviour of light transport,
we can solve inverse problems including caustics, shadows, global
illumination and other sophisticated light transport effects which dif-
ferentiable rasterizers can neither model nor optimize. Moreover, our
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Figure 5: Inverse rendering problems with our formulation and Mit-
suba [NDVZJ19]. The tasks and variable parameters are illustrated
in the top right subfigure of each experiment. Mitsuba often fails
to achieve the desired outcome as it lands on a plateau and cannot
recover.

smoother formulation allows us to descent along a smoothed version
of the original objective function, leading to improved convergence
in inverse rendering tasks, as shown in Fig. 5.

3.3. Zero Grads: Learning Local Surrogate Losses

While we have previously shown that we can optimize gradient de-
scent itself and smooth the loss landscape’s plateaus, all these tech-
niques are of little use when we do not have information about the
actual loss landscape. As discussed in Sec. 2, employing traditional
gradient-free optimizers is infeasible here, as graphics problems
often reach high dimensionality, and densely sampling the loss land-
scape (as is often done for off-line surrogate learning [GSST19])
usually is expensive, as it requires a full rendering or simulator run.

In this work, we thus combine ideas from response surface mod-
elling [KM10] with our previous variational formulation and pro-
pose a method to learn the loss landscape on-the-fly (i.e., during
parameter optimization) by sparsely sampling around the current
parameter position and then fitting a neural interpolant to these sam-
ples. The intuition behind the locality-principle is that the exact
shape of the cost landscape in remote regions is unimportant for the
current gradient step. The neural network, our surrogate hφ, thus
learns the mapping hφ(θ)→L(θ), i.e., it maps parameter values θ

to loss values L(θ). As the surrogate is an analytic forward model
which can be readily differentiated by modern deep-learning frame-
works, querying the parameter gradient for gradient descent now
reduces to a simple gradient-query of the network: ∂θ = ∂hφ(θ)/∂θ.
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Figure 6: Conceptual illustration of the steps in ZeroGrads.
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Figure 7: Comparison of our method, ZeroGrads (Sec. 3.3) against traditional derivative-free optimizers (FR22 implements PRDPT (Sec. 3.2)).
In the upper row, we learn an MLP that replicates digits from the MNIST dataset (approx. 35,000 optimization parameters). In the lower row,
we optimize the height-field of a glass slab such that it refracts incoming light to resemble a reference caustic (1,024 optimization parameters).

We further can derive an unbiased gradient estimator for the surro-
gate gradient ∂φ on the smooth cost landscape, but omit this part for
brevity and refer to [FR23b] for details.

We show results on two high-dimensional optimization tasks in
Fig. 7 and hypothesize that the superiority of our method can be
explained by the centerpiece of our approach, the neural proxy:
in contrast to PRDPT and SPSA, ZeroGrads uses a neural net-
work as proxy function, whose state acts as hysteresis and endows
our method with inertia, limiting the estimated losslandscape’s spa-
tiotemporal change by the network’s adaptability. PRDPT and SPSA,
in contrast, re-build a (linear) gradient estimate during every itera-
tion of the optimization, effectively ignoring information about the
loss-landscape from previous iterations. As this gradient estimate
is a stochastic approximation, it will exhibit noise and variance,
which highlights the main difference between the approaches: while
SPSA and PRDPT estimate the parameter gradient ∂θ (subject to
variance), ZeroGrads estimates the surrogate gradient ∂φ, but analyt-
ically computes the parameter gradient ∂θ. This allows us to move
the higher-variance estimate into the neural network’s parameter up-
date, where the estimate’s noise is smoothed by the aforementioned
hysteresis.

To analyze this behaviour, we plot the variance of the gradient-
magnitude over the course of the optimization in Fig. 8 (here specifi-
cally for the caustic optimiziation, cf. Fig. 7) and find that the vastly
different scales on the y-axes of each subplot confirm our hypothesis:
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Figure 8: Gradient variance
over the course of optimiza-
tion. Note the different scales
on the y-axis.

the variance in the gradient-
magnitude of our method is or-
ders of magnitude lower than
that of the other approaches.
While this does not allow rea-
soning about the correctness
of the derived gradients, it ex-
plains why our approach out-
performs the competitors in
the provided examples and
scales favourably to very high
(tested up to 250k) dimen-
sions.

4. Future Work and Expected Contributions

For my future PhD work, I plan to apply the insights gained from my
previous work to two new domains. Firstly, it would be interesting
to investigate whether we can smooth the sampling trajectory in
stochastic diffusion models (e.g., DDPMs) by applying our varia-
tional formulation to the update rule. This could enable smoother
trajectories and hence faster sampling due to fewer sampling steps
while retaining high-quality outputs.

Secondly, an interesting area of research would be the design of
sampling algorithms that lead to improved gradients during inverse
MC path tracing - similar to what variance reduction techniques such
as importance sampling achieve for the primal (forward) rendering.
Gradient descent most likely does not need a fully converged image
(as long as there is enough signal to discern the influence of the
optimization parameters), but can allot the ray sampling budget such
that it produces more informative gradients which will lead to less
variance and hence faster optimization times.
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